numpy.tensordot
-
numpy.tensordot(a, b, axes=2)
[source] -
Compute tensor dot product along specified axes.
Given two tensors,
a
andb
, and an array_like object containing two array_like objects,(a_axes, b_axes)
, sum the products ofa
’s andb
’s elements (components) over the axes specified bya_axes
andb_axes
. The third argument can be a single non-negative integer_like scalar,N
; if it is such, then the lastN
dimensions ofa
and the firstN
dimensions ofb
are summed over.- Parameters
-
-
a, barray_like
-
Tensors to “dot”.
-
axesint or (2,) array_like
-
- integer_like If an int N, sum over the last N axes of
a
and the first N axes ofb
in order. The sizes of the corresponding axes must match. - (2,) array_like Or, a list of axes to be summed over, first sequence applying to
a
, second tob
. Both elements array_like must be of the same length.
- integer_like If an int N, sum over the last N axes of
-
- Returns
-
-
outputndarray
-
The tensor dot product of the input.
-
See also
-
dot,
einsum
Notes
- Three common use cases are:
-
-
axes = 0
: tensor product \(a\otimes b\) -
axes = 1
: tensor dot product \(a\cdot b\) -
axes = 2
: (default) tensor double contraction \(a:b\)
-
When
axes
is integer_like, the sequence for evaluation will be: first the -Nth axis ina
and 0th axis inb
, and the -1th axis ina
and Nth axis inb
last.When there is more than one axis to sum over - and they are not the last (first) axes of
a
(b
) - the argumentaxes
should consist of two sequences of the same length, with the first axis to sum over given first in both sequences, the second axis second, and so forth.The shape of the result consists of the non-contracted axes of the first tensor, followed by the non-contracted axes of the second.
Examples
A “traditional” example:
>>> a = np.arange(60.).reshape(3,4,5) >>> b = np.arange(24.).reshape(4,3,2) >>> c = np.tensordot(a,b, axes=([1,0],[0,1])) >>> c.shape (5, 2) >>> c array([[4400., 4730.], [4532., 4874.], [4664., 5018.], [4796., 5162.], [4928., 5306.]]) >>> # A slower but equivalent way of computing the same... >>> d = np.zeros((5,2)) >>> for i in range(5): ... for j in range(2): ... for k in range(3): ... for n in range(4): ... d[i,j] += a[k,n,i] * b[n,k,j] >>> c == d array([[ True, True], [ True, True], [ True, True], [ True, True], [ True, True]])
An extended example taking advantage of the overloading of + and *:
>>> a = np.array(range(1, 9)) >>> a.shape = (2, 2, 2) >>> A = np.array(('a', 'b', 'c', 'd'), dtype=object) >>> A.shape = (2, 2) >>> a; A array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) array([['a', 'b'], ['c', 'd']], dtype=object)
>>> np.tensordot(a, A) # third argument default is 2 for double-contraction array(['abbcccdddd', 'aaaaabbbbbbcccccccdddddddd'], dtype=object)
>>> np.tensordot(a, A, 1) array([[['acc', 'bdd'], ['aaacccc', 'bbbdddd']], [['aaaaacccccc', 'bbbbbdddddd'], ['aaaaaaacccccccc', 'bbbbbbbdddddddd']]], dtype=object)
>>> np.tensordot(a, A, 0) # tensor product (result too long to incl.) array([[[[['a', 'b'], ['c', 'd']], ...
>>> np.tensordot(a, A, (0, 1)) array([[['abbbbb', 'cddddd'], ['aabbbbbb', 'ccdddddd']], [['aaabbbbbbb', 'cccddddddd'], ['aaaabbbbbbbb', 'ccccdddddddd']]], dtype=object)
>>> np.tensordot(a, A, (2, 1)) array([[['abb', 'cdd'], ['aaabbbb', 'cccdddd']], [['aaaaabbbbbb', 'cccccdddddd'], ['aaaaaaabbbbbbbb', 'cccccccdddddddd']]], dtype=object)
>>> np.tensordot(a, A, ((0, 1), (0, 1))) array(['abbbcccccddddddd', 'aabbbbccccccdddddddd'], dtype=object)
>>> np.tensordot(a, A, ((2, 1), (1, 0))) array(['acccbbdddd', 'aaaaacccccccbbbbbbdddddddd'], dtype=object)
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/generated/numpy.tensordot.html