numpy.ma.frombuffer
- 
ma.frombuffer(buffer, dtype=float, count=- 1, offset=0, *, like=None) = <numpy.ma.core._convert2ma object>
- 
Interpret a buffer as a 1-dimensional array. - Parameters
- 
- 
bufferbuffer_like
- 
An object that exposes the buffer interface. 
- 
dtypedata-type, optional
- 
Data-type of the returned array; default: float. 
- 
countint, optional
- 
Number of items to read. -1means all data in the buffer.
- 
offsetint, optional
- 
Start reading the buffer from this offset (in bytes); default: 0. 
- 
likearray_like
- 
Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as likesupports the__array_function__protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.New in version 1.20.0. 
 
- 
 NotesIf the buffer has data that is not in machine byte-order, this should be specified as part of the data-type, e.g.: >>> dt = np.dtype(int) >>> dt = dt.newbyteorder('>') >>> np.frombuffer(buf, dtype=dt)The data of the resulting array will not be byteswapped, but will be interpreted correctly. Examples>>> s = b'hello world' >>> np.frombuffer(s, dtype='S1', count=5, offset=6) array([b'w', b'o', b'r', b'l', b'd'], dtype='|S1') >>> np.frombuffer(b'\x01\x02', dtype=np.uint8) array([1, 2], dtype=uint8) >>> np.frombuffer(b'\x01\x02\x03\x04\x05', dtype=np.uint8, count=3) array([1, 2, 3], dtype=uint8) 
    © 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
    https://numpy.org/doc/1.21/reference/generated/numpy.ma.frombuffer.html