numpy.logical_and

numpy.logical_and(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'logical_and'>

Compute the truth value of x1 AND x2 element-wise.

Parameters
x1, x2array_like

Input arrays. If x1.shape != x2.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

outndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

wherearray_like, optional

This condition is broadcast over the input. At locations where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original value. Note that if an uninitialized out array is created via the default out=None, locations within it where the condition is False will remain uninitialized.

**kwargs

For other keyword-only arguments, see the ufunc docs.

Returns
yndarray or bool

Boolean result of the logical AND operation applied to the elements of x1 and x2; the shape is determined by broadcasting. This is a scalar if both x1 and x2 are scalars.

See also

logical_or, logical_not, logical_xor
bitwise_and

Examples

>>> np.logical_and(True, False)
False
>>> np.logical_and([True, False], [False, False])
array([False, False])
>>> x = np.arange(5)
>>> np.logical_and(x>1, x<4)
array([False, False,  True,  True, False])

The & operator can be used as a shorthand for np.logical_and on boolean ndarrays.

>>> a = np.array([True, False])
>>> b = np.array([False, False])
>>> a & b
array([False, False])

© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/generated/numpy.logical_and.html