numpy.linalg.eigvalsh
-
linalg.eigvalsh(a, UPLO='L')
[source] -
Compute the eigenvalues of a complex Hermitian or real symmetric matrix.
Main difference from eigh: the eigenvectors are not computed.
- Parameters
-
-
a(…, M, M) array_like
-
A complex- or real-valued matrix whose eigenvalues are to be computed.
-
UPLO{‘L’, ‘U’}, optional
-
Specifies whether the calculation is done with the lower triangular part of
a
(‘L’, default) or the upper triangular part (‘U’). Irrespective of this value only the real parts of the diagonal will be considered in the computation to preserve the notion of a Hermitian matrix. It therefore follows that the imaginary part of the diagonal will always be treated as zero.
-
- Returns
-
-
w(…, M,) ndarray
-
The eigenvalues in ascending order, each repeated according to its multiplicity.
-
- Raises
-
- LinAlgError
-
If the eigenvalue computation does not converge.
See also
-
eigh
-
eigenvalues and eigenvectors of real symmetric or complex Hermitian (conjugate symmetric) arrays.
-
eigvals
-
eigenvalues of general real or complex arrays.
-
eig
-
eigenvalues and right eigenvectors of general real or complex arrays.
-
scipy.linalg.eigvalsh
-
Similar function in SciPy.
Notes
New in version 1.8.0.
Broadcasting rules apply, see the
numpy.linalg
documentation for details.The eigenvalues are computed using LAPACK routines
_syevd
,_heevd
.Examples
>>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> LA.eigvalsh(a) array([ 0.17157288, 5.82842712]) # may vary
>>> # demonstrate the treatment of the imaginary part of the diagonal >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) >>> a array([[5.+2.j, 9.-2.j], [0.+2.j, 2.-1.j]]) >>> # with UPLO='L' this is numerically equivalent to using LA.eigvals() >>> # with: >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]]) >>> b array([[5.+0.j, 0.-2.j], [0.+2.j, 2.+0.j]]) >>> wa = LA.eigvalsh(a) >>> wb = LA.eigvals(b) >>> wa; wb array([1., 6.]) array([6.+0.j, 1.+0.j])
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/generated/numpy.linalg.eigvalsh.html