numpy.ma.allclose
-
ma.allclose(a, b, masked_equal=True, rtol=1e-05, atol=1e-08)
[source] -
Returns True if two arrays are element-wise equal within a tolerance.
This function is equivalent to
allclose
except that masked values are treated as equal (default) or unequal, depending on themasked_equal
argument.- Parameters
-
-
a, barray_like
-
Input arrays to compare.
-
masked_equalbool, optional
-
Whether masked values in
a
andb
are considered equal (True) or not (False). They are considered equal by default. -
rtolfloat, optional
-
Relative tolerance. The relative difference is equal to
rtol * b
. Default is 1e-5. -
atolfloat, optional
-
Absolute tolerance. The absolute difference is equal to
atol
. Default is 1e-8.
-
- Returns
-
-
ybool
-
Returns True if the two arrays are equal within the given tolerance, False otherwise. If either array contains NaN, then False is returned.
-
See also
-
all,
any
-
numpy.allclose
-
the non-masked
allclose
.
Notes
If the following equation is element-wise True, then
allclose
returns True:absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))
Return True if all elements of
a
andb
are equal subject to given tolerances.Examples
>>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1]) >>> a masked_array(data=[10000000000.0, 1e-07, --], mask=[False, False, True], fill_value=1e+20) >>> b = np.ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1]) >>> np.ma.allclose(a, b) False
>>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) >>> b = np.ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1]) >>> np.ma.allclose(a, b) True >>> np.ma.allclose(a, b, masked_equal=False) False
Masked values are not compared directly.
>>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) >>> b = np.ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1]) >>> np.ma.allclose(a, b) True >>> np.ma.allclose(a, b, masked_equal=False) False
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/generated/numpy.ma.allclose.html