numpy.asarray
-
numpy.asarray(a, dtype=None, order=None, *, like=None) -
Convert the input to an array.
- Parameters
-
-
aarray_like -
Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.
-
dtypedata-type, optional -
By default, the data-type is inferred from the input data.
-
order{‘C’, ‘F’, ‘A’, ‘K’}, optional -
Memory layout. ‘A’ and ‘K’ depend on the order of input array a. ‘C’ row-major (C-style), ‘F’ column-major (Fortran-style) memory representation. ‘A’ (any) means ‘F’ if
ais Fortran contiguous, ‘C’ otherwise ‘K’ (keep) preserve input order Defaults to ‘C’. -
likearray_like -
Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as
likesupports the__array_function__protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.New in version 1.20.0.
-
- Returns
-
-
outndarray -
Array interpretation of
a. No copy is performed if the input is already an ndarray with matching dtype and order. Ifais a subclass of ndarray, a base class ndarray is returned.
-
See also
-
asanyarray -
Similar function which passes through subclasses.
-
ascontiguousarray -
Convert input to a contiguous array.
-
asfarray -
Convert input to a floating point ndarray.
-
asfortranarray -
Convert input to an ndarray with column-major memory order.
-
asarray_chkfinite -
Similar function which checks input for NaNs and Infs.
-
fromiter -
Create an array from an iterator.
-
fromfunction -
Construct an array by executing a function on grid positions.
Examples
Convert a list into an array:
>>> a = [1, 2] >>> np.asarray(a) array([1, 2])
Existing arrays are not copied:
>>> a = np.array([1, 2]) >>> np.asarray(a) is a True
If
dtypeis set, array is copied only if dtype does not match:>>> a = np.array([1, 2], dtype=np.float32) >>> np.asarray(a, dtype=np.float32) is a True >>> np.asarray(a, dtype=np.float64) is a False
Contrary to
asanyarray, ndarray subclasses are not passed through:>>> issubclass(np.recarray, np.ndarray) True >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) >>> np.asarray(a) is a False >>> np.asanyarray(a) is a True
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/generated/numpy.asarray.html