numpy.asarray
-
numpy.asarray(a, dtype=None, order=None, *, like=None)
-
Convert the input to an array.
- Parameters
-
-
aarray_like
-
Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.
-
dtypedata-type, optional
-
By default, the data-type is inferred from the input data.
-
order{‘C’, ‘F’, ‘A’, ‘K’}, optional
-
Memory layout. ‘A’ and ‘K’ depend on the order of input array a. ‘C’ row-major (C-style), ‘F’ column-major (Fortran-style) memory representation. ‘A’ (any) means ‘F’ if
a
is Fortran contiguous, ‘C’ otherwise ‘K’ (keep) preserve input order Defaults to ‘C’. -
likearray_like
-
Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as
like
supports the__array_function__
protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.New in version 1.20.0.
-
- Returns
-
-
outndarray
-
Array interpretation of
a
. No copy is performed if the input is already an ndarray with matching dtype and order. Ifa
is a subclass of ndarray, a base class ndarray is returned.
-
See also
-
asanyarray
-
Similar function which passes through subclasses.
-
ascontiguousarray
-
Convert input to a contiguous array.
-
asfarray
-
Convert input to a floating point ndarray.
-
asfortranarray
-
Convert input to an ndarray with column-major memory order.
-
asarray_chkfinite
-
Similar function which checks input for NaNs and Infs.
-
fromiter
-
Create an array from an iterator.
-
fromfunction
-
Construct an array by executing a function on grid positions.
Examples
Convert a list into an array:
>>> a = [1, 2] >>> np.asarray(a) array([1, 2])
Existing arrays are not copied:
>>> a = np.array([1, 2]) >>> np.asarray(a) is a True
If
dtype
is set, array is copied only if dtype does not match:>>> a = np.array([1, 2], dtype=np.float32) >>> np.asarray(a, dtype=np.float32) is a True >>> np.asarray(a, dtype=np.float64) is a False
Contrary to
asanyarray
, ndarray subclasses are not passed through:>>> issubclass(np.recarray, np.ndarray) True >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) >>> np.asarray(a) is a False >>> np.asanyarray(a) is a True
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/generated/numpy.asarray.html