numpy.histogram2d
-
numpy.histogram2d(x, y, bins=10, range=None, normed=None, weights=None, density=None)
[source] -
Compute the bi-dimensional histogram of two data samples.
- Parameters
-
-
xarray_like, shape (N,)
-
An array containing the x coordinates of the points to be histogrammed.
-
yarray_like, shape (N,)
-
An array containing the y coordinates of the points to be histogrammed.
-
binsint or array_like or [int, int] or [array, array], optional
-
The bin specification:
- If int, the number of bins for the two dimensions (nx=ny=bins).
- If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins).
- If [int, int], the number of bins in each dimension (nx, ny = bins).
- If [array, array], the bin edges in each dimension (x_edges, y_edges = bins).
- A combination [int, array] or [array, int], where int is the number of bins and array is the bin edges.
-
rangearray_like, shape(2,2), optional
-
The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the
bins
parameters):[[xmin, xmax], [ymin, ymax]]
. All values outside of this range will be considered outliers and not tallied in the histogram. -
densitybool, optional
-
If False, the default, returns the number of samples in each bin. If True, returns the probability density function at the bin,
bin_count / sample_count / bin_area
. -
normedbool, optional
-
An alias for the density argument that behaves identically. To avoid confusion with the broken normed argument to
histogram
,density
should be preferred. -
weightsarray_like, shape(N,), optional
-
An array of values
w_i
weighing each sample(x_i, y_i)
. Weights are normalized to 1 ifnormed
is True. Ifnormed
is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin.
-
- Returns
-
-
Hndarray, shape(nx, ny)
-
The bi-dimensional histogram of samples
x
andy
. Values inx
are histogrammed along the first dimension and values iny
are histogrammed along the second dimension. -
xedgesndarray, shape(nx+1,)
-
The bin edges along the first dimension.
-
yedgesndarray, shape(ny+1,)
-
The bin edges along the second dimension.
-
See also
-
histogram
-
1D histogram
-
histogramdd
-
Multidimensional histogram
Notes
When
normed
is True, then the returned histogram is the sample density, defined such that the sum over bins of the productbin_value * bin_area
is 1.Please note that the histogram does not follow the Cartesian convention where
x
values are on the abscissa andy
values on the ordinate axis. Rather,x
is histogrammed along the first dimension of the array (vertical), andy
along the second dimension of the array (horizontal). This ensures compatibility withhistogramdd
.Examples
>>> from matplotlib.image import NonUniformImage >>> import matplotlib.pyplot as plt
Construct a 2-D histogram with variable bin width. First define the bin edges:
>>> xedges = [0, 1, 3, 5] >>> yedges = [0, 2, 3, 4, 6]
Next we create a histogram H with random bin content:
>>> x = np.random.normal(2, 1, 100) >>> y = np.random.normal(1, 1, 100) >>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges)) >>> # Histogram does not follow Cartesian convention (see Notes), >>> # therefore transpose H for visualization purposes. >>> H = H.T
imshow
can only display square bins:>>> fig = plt.figure(figsize=(7, 3)) >>> ax = fig.add_subplot(131, title='imshow: square bins') >>> plt.imshow(H, interpolation='nearest', origin='lower', ... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) <matplotlib.image.AxesImage object at 0x...>
pcolormesh
can display actual edges:>>> ax = fig.add_subplot(132, title='pcolormesh: actual edges', ... aspect='equal') >>> X, Y = np.meshgrid(xedges, yedges) >>> ax.pcolormesh(X, Y, H) <matplotlib.collections.QuadMesh object at 0x...>
NonUniformImage
can be used to display actual bin edges with interpolation:>>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated', ... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]]) >>> im = NonUniformImage(ax, interpolation='bilinear') >>> xcenters = (xedges[:-1] + xedges[1:]) / 2 >>> ycenters = (yedges[:-1] + yedges[1:]) / 2 >>> im.set_data(xcenters, ycenters, H) >>> ax.images.append(im) >>> plt.show()
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/generated/numpy.histogram2d.html