numpy.random.Generator.vonmises
method
-
random.Generator.vonmises(mu, kappa, size=None)
-
Draw samples from a von Mises distribution.
Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi].
The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution.
- Parameters
-
-
mufloat or array_like of floats
-
Mode (“center”) of the distribution.
-
kappafloat or array_like of floats
-
Dispersion of the distribution, has to be >=0.
-
sizeint or tuple of ints, optional
-
Output shape. If the given shape is, e.g.,
(m, n, k)
, thenm * n * k
samples are drawn. If size isNone
(default), a single value is returned ifmu
andkappa
are both scalars. Otherwise,np.broadcast(mu, kappa).size
samples are drawn.
-
- Returns
-
-
outndarray or scalar
-
Drawn samples from the parameterized von Mises distribution.
-
See also
-
scipy.stats.vonmises
-
probability density function, distribution, or cumulative density function, etc.
Notes
The probability density for the von Mises distribution is
\[p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},\]where \(\mu\) is the mode and \(\kappa\) the dispersion, and \(I_0(\kappa)\) is the modified Bessel function of order 0.
The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science.
References
-
1
-
Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing,” New York: Dover, 1972.
-
2
-
von Mises, R., “Mathematical Theory of Probability and Statistics”, New York: Academic Press, 1964.
Examples
Draw samples from the distribution:
>>> mu, kappa = 0.0, 4.0 # mean and dispersion >>> s = np.random.default_rng().vonmises(mu, kappa, 1000)
Display the histogram of the samples, along with the probability density function:
>>> import matplotlib.pyplot as plt >>> from scipy.special import i0 >>> plt.hist(s, 50, density=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) >>> plt.plot(x, y, linewidth=2, color='r') >>> plt.show()
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/random/generated/numpy.random.Generator.vonmises.html