numpy.fromfunction
-
numpy.fromfunction(function, shape, *, dtype=<class 'float'>, like=None, **kwargs)
[source] -
Construct an array by executing a function over each coordinate.
The resulting array therefore has a value
fn(x, y, z)
at coordinate(x, y, z)
.- Parameters
-
-
functioncallable
-
The function is called with N parameters, where N is the rank of
shape
. Each parameter represents the coordinates of the array varying along a specific axis. For example, ifshape
were(2, 2)
, then the parameters would bearray([[0, 0], [1, 1]])
andarray([[0, 1], [0, 1]])
-
shape(N,) tuple of ints
-
Shape of the output array, which also determines the shape of the coordinate arrays passed to
function
. -
dtypedata-type, optional
-
Data-type of the coordinate arrays passed to
function
. By default,dtype
is float. -
likearray_like
-
Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as
like
supports the__array_function__
protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.New in version 1.20.0.
-
- Returns
-
-
fromfunctionany
-
The result of the call to
function
is passed back directly. Therefore the shape offromfunction
is completely determined byfunction
. Iffunction
returns a scalar value, the shape offromfunction
would not match theshape
parameter.
-
See also
-
indices,
meshgrid
Notes
Keywords other than
dtype
are passed tofunction
.Examples
>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int) array([[ True, False, False], [False, True, False], [False, False, True]])
>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int) array([[0, 1, 2], [1, 2, 3], [2, 3, 4]])
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/generated/numpy.fromfunction.html