numpy.correlate
-
numpy.correlate(a, v, mode='valid')
[source] -
Cross-correlation of two 1-dimensional sequences.
This function computes the correlation as generally defined in signal processing texts:
c_{av}[k] = sum_n a[n+k] * conj(v[n])
with a and v sequences being zero-padded where necessary and conj being the conjugate.
- Parameters
- Returns
-
-
outndarray
-
Discrete cross-correlation of
a
andv
.
-
See also
-
convolve
-
Discrete, linear convolution of two one-dimensional sequences.
-
multiarray.correlate
-
Old, no conjugate, version of correlate.
-
scipy.signal.correlate
-
uses FFT which has superior performance on large arrays.
Notes
The definition of correlation above is not unique and sometimes correlation may be defined differently. Another common definition is:
c'_{av}[k] = sum_n a[n] conj(v[n+k])
which is related to
c_{av}[k]
byc'_{av}[k] = c_{av}[-k]
.numpy.correlate
may perform slowly in large arrays (i.e. n = 1e5) because it does not use the FFT to compute the convolution; in that case,scipy.signal.correlate
might be preferable.Examples
>>> np.correlate([1, 2, 3], [0, 1, 0.5]) array([3.5]) >>> np.correlate([1, 2, 3], [0, 1, 0.5], "same") array([2. , 3.5, 3. ]) >>> np.correlate([1, 2, 3], [0, 1, 0.5], "full") array([0.5, 2. , 3.5, 3. , 0. ])
Using complex sequences:
>>> np.correlate([1+1j, 2, 3-1j], [0, 1, 0.5j], 'full') array([ 0.5-0.5j, 1.0+0.j , 1.5-1.5j, 3.0-1.j , 0.0+0.j ])
Note that you get the time reversed, complex conjugated result when the two input sequences change places, i.e.,
c_{va}[k] = c^{*}_{av}[-k]
:>>> np.correlate([0, 1, 0.5j], [1+1j, 2, 3-1j], 'full') array([ 0.0+0.j , 3.0+1.j , 1.5+1.5j, 1.0+0.j , 0.5+0.5j])
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/generated/numpy.correlate.html