numpy.polynomial.hermite_e.hermefromroots
-
polynomial.hermite_e.hermefromroots(roots)
[source] -
Generate a HermiteE series with given roots.
The function returns the coefficients of the polynomial
\[p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),\]in HermiteE form, where the
r_n
are the roots specified inroots
. If a zero has multiplicity n, then it must appear inroots
n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, thenroots
looks something like [2, 2, 2, 3, 3]. The roots can appear in any order.If the returned coefficients are
c
, then\[p(x) = c_0 + c_1 * He_1(x) + ... + c_n * He_n(x)\]The coefficient of the last term is not generally 1 for monic polynomials in HermiteE form.
- Parameters
-
-
rootsarray_like
-
Sequence containing the roots.
-
- Returns
-
-
outndarray
-
1-D array of coefficients. If all roots are real then
out
is a real array, if some of the roots are complex, thenout
is complex even if all the coefficients in the result are real (see Examples below).
-
See also
Examples
>>> from numpy.polynomial.hermite_e import hermefromroots, hermeval >>> coef = hermefromroots((-1, 0, 1)) >>> hermeval((-1, 0, 1), coef) array([0., 0., 0.]) >>> coef = hermefromroots((-1j, 1j)) >>> hermeval((-1j, 1j), coef) array([0.+0.j, 0.+0.j])
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/generated/numpy.polynomial.hermite_e.hermefromroots.html