What’s New or Different
Warning
The Box-Muller method used to produce NumPy’s normals is no longer available in Generator
. It is not possible to reproduce the exact random values using Generator
for the normal distribution or any other distribution that relies on the normal such as the Generator.gamma
or Generator.standard_t
. If you require bitwise backward compatible streams, use RandomState
, i.e., RandomState.gamma
or RandomState.standard_t
.
Quick comparison of legacy mtrand to the new Generator
Feature | Older Equivalent | Notes |
| ||
|
|
Access the values in a BitGenerator, convert them to Many other distributions are also supported. |
|
| Use the |
And in more detail:
- Simulate from the complex normal distribution (
complex_normal
) - The normal, exponential and gamma generators use 256-step Ziggurat methods which are 2-10 times faster than NumPy’s default implementation in
standard_normal
,standard_exponential
orstandard_gamma
.
In [1]: from numpy.random import Generator, PCG64 In [2]: import numpy.random In [3]: rng = Generator(PCG64()) In [4]: %timeit -n 1 rng.standard_normal(100000) ...: %timeit -n 1 numpy.random.standard_normal(100000) ...: 1.11 ms +- 30.5 us per loop (mean +- std. dev. of 7 runs, 1 loop each) 2.27 ms +- 27.8 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
In [5]: %timeit -n 1 rng.standard_exponential(100000) ...: %timeit -n 1 numpy.random.standard_exponential(100000) ...: 651 us +- 62.1 us per loop (mean +- std. dev. of 7 runs, 1 loop each) 1.66 ms +- 6.18 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
In [6]: %timeit -n 1 rng.standard_gamma(3.0, 100000) ...: %timeit -n 1 numpy.random.standard_gamma(3.0, 100000) ...: 2.17 ms +- 12.6 us per loop (mean +- std. dev. of 7 runs, 1 loop each) 4.58 ms +- 88.6 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
-
integers
is now the canonical way to generate integer random numbers from a discrete uniform distribution. Therand
andrandn
methods are only available through the legacyRandomState
. This replaces bothrandint
and the deprecatedrandom_integers
. - The Box-Muller method used to produce NumPy’s normals is no longer available.
- All bit generators can produce doubles, uint64s and uint32s via CTypes (
ctypes
) and CFFI (cffi
). This allows these bit generators to be used in numba. - The bit generators can be used in downstream projects via Cython.
-
Optional
dtype
argument that acceptsnp.float32
ornp.float64
to produce either single or double prevision uniform random variables for select distributions- Uniforms (
random
andintegers
) - Normals (
standard_normal
) - Standard Gammas (
standard_gamma
) - Standard Exponentials (
standard_exponential
)
- Uniforms (
In [7]: rng = Generator(PCG64(0)) In [8]: rng.random(3, dtype='d') Out[8]: array([0.63696169, 0.26978671, 0.04097352]) In [9]: rng.random(3, dtype='f') Out[9]: array([0.07524014, 0.01652753, 0.17526722], dtype=float32)
-
Optional
out
argument that allows existing arrays to be filled for select distributions- Uniforms (
random
) - Normals (
standard_normal
) - Standard Gammas (
standard_gamma
) - Standard Exponentials (
standard_exponential
)
This allows multithreading to fill large arrays in chunks using suitable BitGenerators in parallel.
- Uniforms (
In [10]: existing = np.zeros(4) In [11]: rng.random(out=existing[:2]) Out[11]: array([0.91275558, 0.60663578]) In [12]: print(existing) [0.91275558 0.60663578 0. 0. ]
- Optional
axis
argument for methods likechoice
,permutation
andshuffle
that controls which axis an operation is performed over for multi-dimensional arrays.
In [13]: rng = Generator(PCG64(123456789)) In [14]: a = np.arange(12).reshape((3, 4)) In [15]: a Out[15]: array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) In [16]: rng.choice(a, axis=1, size=5) Out[16]: array([[ 3, 0, 2, 3, 1], [ 7, 4, 6, 7, 5], [11, 8, 10, 11, 9]]) In [17]: rng.shuffle(a, axis=1) # Shuffle in-place In [18]: a Out[18]: array([[ 3, 1, 2, 0], [ 7, 5, 6, 4], [11, 9, 10, 8]])
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/random/new-or-different.html