numpy.random.geometric

random.geometric(p, size=None)

Draw samples from the geometric distribution.

Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, k = 1, 2, ....

The probability mass function of the geometric distribution is

\[f(k) = (1 - p)^{k - 1} p\]

where p is the probability of success of an individual trial.

Note

New code should use the geometric method of a default_rng() instance instead; please see the Quick Start.

Parameters
pfloat or array_like of floats

The probability of success of an individual trial.

sizeint or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. If size is None (default), a single value is returned if p is a scalar. Otherwise, np.array(p).size samples are drawn.

Returns
outndarray or scalar

Drawn samples from the parameterized geometric distribution.

See also

Generator.geometric

which should be used for new code.

Examples

Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to 0.35:

>>> z = np.random.geometric(p=0.35, size=10000)

How many trials succeeded after a single run?

>>> (z == 1).sum() / 10000.
0.34889999999999999 #random

© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/random/generated/numpy.random.geometric.html