numpy.polynomial.laguerre.lagvander
-
polynomial.laguerre.lagvander(x, deg)
[source] -
Pseudo-Vandermonde matrix of given degree.
Returns the pseudo-Vandermonde matrix of degree
deg
and sample pointsx
. The pseudo-Vandermonde matrix is defined by\[V[..., i] = L_i(x)\]where
0 <= i <= deg
. The leading indices ofV
index the elements ofx
and the last index is the degree of the Laguerre polynomial.If
c
is a 1-D array of coefficients of lengthn + 1
andV
is the arrayV = lagvander(x, n)
, thennp.dot(V, c)
andlagval(x, c)
are the same up to roundoff. This equivalence is useful both for least squares fitting and for the evaluation of a large number of Laguerre series of the same degree and sample points.- Parameters
-
-
xarray_like
-
Array of points. The dtype is converted to float64 or complex128 depending on whether any of the elements are complex. If
x
is scalar it is converted to a 1-D array. -
degint
-
Degree of the resulting matrix.
-
- Returns
-
-
vanderndarray
-
The pseudo-Vandermonde matrix. The shape of the returned matrix is
x.shape + (deg + 1,)
, where The last index is the degree of the corresponding Laguerre polynomial. The dtype will be the same as the convertedx
.
-
Examples
>>> from numpy.polynomial.laguerre import lagvander >>> x = np.array([0, 1, 2]) >>> lagvander(x, 3) array([[ 1. , 1. , 1. , 1. ], [ 1. , 0. , -0.5 , -0.66666667], [ 1. , -1. , -1. , -0.33333333]])
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/generated/numpy.polynomial.laguerre.lagvander.html