C-Types Foreign Function Interface (numpy.ctypeslib)
-
numpy.ctypeslib.as_array(obj, shape=None)
[source] -
Create a numpy array from a ctypes array or POINTER.
The numpy array shares the memory with the ctypes object.
The shape parameter must be given if converting from a ctypes POINTER. The shape parameter is ignored if converting from a ctypes array
-
numpy.ctypeslib.as_ctypes(obj)
[source] -
Create and return a ctypes object from a numpy array. Actually anything that exposes the __array_interface__ is accepted.
-
numpy.ctypeslib.as_ctypes_type(dtype)
[source] -
Convert a dtype into a ctypes type.
- Parameters
-
-
dtypedtype
-
The dtype to convert
-
- Returns
-
- ctype
-
A ctype scalar, union, array, or struct
- Raises
-
- NotImplementedError
-
If the conversion is not possible
Notes
This function does not losslessly round-trip in either direction.
np.dtype(as_ctypes_type(dt))
will:- insert padding fields
- reorder fields to be sorted by offset
- discard field titles
as_ctypes_type(np.dtype(ctype))
will:- discard the class names of
ctypes.Structure
s andctypes.Union
s - convert single-element
ctypes.Union
s into single-elementctypes.Structure
s - insert padding fields
-
numpy.ctypeslib.load_library(libname, loader_path)
[source] -
It is possible to load a library using >>> lib = ctypes.cdll[<full_path_name>] # doctest: +SKIP
But there are cross-platform considerations, such as library file extensions, plus the fact Windows will just load the first library it finds with that name. NumPy supplies the load_library function as a convenience.
- Parameters
-
-
libnamestr
-
Name of the library, which can have ‘lib’ as a prefix, but without an extension.
-
loader_pathstr
-
Where the library can be found.
-
- Returns
-
-
ctypes.cdll[libpath]library object
-
A ctypes library object
-
- Raises
-
- OSError
-
If there is no library with the expected extension, or the library is defective and cannot be loaded.
-
numpy.ctypeslib.ndpointer(dtype=None, ndim=None, shape=None, flags=None)
[source] -
Array-checking restype/argtypes.
An ndpointer instance is used to describe an ndarray in restypes and argtypes specifications. This approach is more flexible than using, for example,
POINTER(c_double)
, since several restrictions can be specified, which are verified upon calling the ctypes function. These include data type, number of dimensions, shape and flags. If a given array does not satisfy the specified restrictions, aTypeError
is raised.- Parameters
-
-
dtypedata-type, optional
-
Array data-type.
-
ndimint, optional
-
Number of array dimensions.
-
shapetuple of ints, optional
-
Array shape.
-
flagsstr or tuple of str
-
Array flags; may be one or more of:
- C_CONTIGUOUS / C / CONTIGUOUS
- F_CONTIGUOUS / F / FORTRAN
- OWNDATA / O
- WRITEABLE / W
- ALIGNED / A
- WRITEBACKIFCOPY / X
- UPDATEIFCOPY / U
-
- Returns
-
-
klassndpointer type object
-
A type object, which is an
_ndtpr
instance containing dtype, ndim, shape and flags information.
-
- Raises
-
- TypeError
-
If a given array does not satisfy the specified restrictions.
Examples
>>> clib.somefunc.argtypes = [np.ctypeslib.ndpointer(dtype=np.float64, ... ndim=1, ... flags='C_CONTIGUOUS')] ... >>> clib.somefunc(np.array([1, 2, 3], dtype=np.float64)) ...
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/routines.ctypeslib.html