Extending
The BitGenerators have been designed to be extendable using standard tools for high-performance Python – numba and Cython. The Generator
object can also be used with user-provided BitGenerators as long as these export a small set of required functions.
Numba
Numba can be used with either CTypes or CFFI. The current iteration of the BitGenerators all export a small set of functions through both interfaces.
This example shows how numba can be used to produce gaussian samples using a pure Python implementation which is then compiled. The random numbers are provided by ctypes.next_double
.
import numpy as np import numba as nb from numpy.random import PCG64 from timeit import timeit bit_gen = PCG64() next_d = bit_gen.cffi.next_double state_addr = bit_gen.cffi.state_address def normals(n, state): out = np.empty(n) for i in range((n + 1) // 2): x1 = 2.0 * next_d(state) - 1.0 x2 = 2.0 * next_d(state) - 1.0 r2 = x1 * x1 + x2 * x2 while r2 >= 1.0 or r2 == 0.0: x1 = 2.0 * next_d(state) - 1.0 x2 = 2.0 * next_d(state) - 1.0 r2 = x1 * x1 + x2 * x2 f = np.sqrt(-2.0 * np.log(r2) / r2) out[2 * i] = f * x1 if 2 * i + 1 < n: out[2 * i + 1] = f * x2 return out # Compile using Numba normalsj = nb.jit(normals, nopython=True) # Must use state address not state with numba n = 10000 def numbacall(): return normalsj(n, state_addr) rg = np.random.Generator(PCG64()) def numpycall(): return rg.normal(size=n) # Check that the functions work r1 = numbacall() r2 = numpycall() assert r1.shape == (n,) assert r1.shape == r2.shape t1 = timeit(numbacall, number=1000) print(f'{t1:.2f} secs for {n} PCG64 (Numba/PCG64) gaussian randoms') t2 = timeit(numpycall, number=1000) print(f'{t2:.2f} secs for {n} PCG64 (NumPy/PCG64) gaussian randoms')
Both CTypes and CFFI allow the more complicated distributions to be used directly in Numba after compiling the file distributions.c into a DLL
or so
. An example showing the use of a more complicated distribution is in the examples
section below.
Cython
Cython can be used to unpack the PyCapsule
provided by a BitGenerator. This example uses PCG64
and the example from above. The usual caveats for writing high-performance code using Cython – removing bounds checks and wrap around, providing array alignment information – still apply.
#!/usr/bin/env python3 #cython: language_level=3 """ This file shows how the to use a BitGenerator to create a distribution. """ import numpy as np cimport numpy as np cimport cython from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer from libc.stdint cimport uint16_t, uint64_t from numpy.random cimport bitgen_t from numpy.random import PCG64 from numpy.random.c_distributions cimport ( random_standard_uniform_fill, random_standard_uniform_fill_f) @cython.boundscheck(False) @cython.wraparound(False) def uniforms(Py_ssize_t n): """ Create an array of `n` uniformly distributed doubles. A 'real' distribution would want to process the values into some non-uniform distribution """ cdef Py_ssize_t i cdef bitgen_t *rng cdef const char *capsule_name = "BitGenerator" cdef double[::1] random_values x = PCG64() capsule = x.capsule # Optional check that the capsule if from a BitGenerator if not PyCapsule_IsValid(capsule, capsule_name): raise ValueError("Invalid pointer to anon_func_state") # Cast the pointer rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) random_values = np.empty(n, dtype='float64') with x.lock, nogil: for i in range(n): # Call the function random_values[i] = rng.next_double(rng.state) randoms = np.asarray(random_values) return randoms
The BitGenerator can also be directly accessed using the members of the bitgen_t
struct.
@cython.boundscheck(False) @cython.wraparound(False) def uint10_uniforms(Py_ssize_t n): """Uniform 10 bit integers stored as 16-bit unsigned integers""" cdef Py_ssize_t i cdef bitgen_t *rng cdef const char *capsule_name = "BitGenerator" cdef uint16_t[::1] random_values cdef int bits_remaining cdef int width = 10 cdef uint64_t buff, mask = 0x3FF x = PCG64() capsule = x.capsule if not PyCapsule_IsValid(capsule, capsule_name): raise ValueError("Invalid pointer to anon_func_state") rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) random_values = np.empty(n, dtype='uint16') # Best practice is to release GIL and acquire the lock bits_remaining = 0 with x.lock, nogil: for i in range(n): if bits_remaining < width: buff = rng.next_uint64(rng.state) random_values[i] = buff & mask buff >>= width randoms = np.asarray(random_values) return randoms
Cython can be used to directly access the functions in numpy/random/c_distributions.pxd
. This requires linking with the npyrandom
library located in numpy/random/lib
.
def uniforms_ex(bit_generator, Py_ssize_t n, dtype=np.float64): """ Create an array of `n` uniformly distributed doubles via a "fill" function. A 'real' distribution would want to process the values into some non-uniform distribution Parameters ---------- bit_generator: BitGenerator instance n: int Output vector length dtype: {str, dtype}, optional Desired dtype, either 'd' (or 'float64') or 'f' (or 'float32'). The default dtype value is 'd' """ cdef Py_ssize_t i cdef bitgen_t *rng cdef const char *capsule_name = "BitGenerator" cdef np.ndarray randoms capsule = bit_generator.capsule # Optional check that the capsule if from a BitGenerator if not PyCapsule_IsValid(capsule, capsule_name): raise ValueError("Invalid pointer to anon_func_state") # Cast the pointer rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) _dtype = np.dtype(dtype) randoms = np.empty(n, dtype=_dtype) if _dtype == np.float32: with bit_generator.lock: random_standard_uniform_fill_f(rng, n, <float*>np.PyArray_DATA(randoms)) elif _dtype == np.float64: with bit_generator.lock: random_standard_uniform_fill(rng, n, <double*>np.PyArray_DATA(randoms)) else: raise TypeError('Unsupported dtype %r for random' % _dtype) return randoms
See Extending numpy.random via Cython for the complete listings of these examples and a minimal setup.py
to build the c-extension modules.
CFFI
CFFI can be used to directly access the functions in include/numpy/random/distributions.h
. Some “massaging” of the header file is required:
""" Use cffi to access any of the underlying C functions from distributions.h """ import os import numpy as np import cffi from .parse import parse_distributions_h ffi = cffi.FFI() inc_dir = os.path.join(np.get_include(), 'numpy') # Basic numpy types ffi.cdef(''' typedef intptr_t npy_intp; typedef unsigned char npy_bool; ''') parse_distributions_h(ffi, inc_dir)
Once the header is parsed by ffi.cdef
, the functions can be accessed directly from the _generator
shared object, using the BitGenerator.cffi
interface.
# Compare the distributions.h random_standard_normal_fill to # Generator.standard_random bit_gen = np.random.PCG64() rng = np.random.Generator(bit_gen) state = bit_gen.state interface = rng.bit_generator.cffi n = 100 vals_cffi = ffi.new('double[%d]' % n) lib.random_standard_normal_fill(interface.bit_generator, n, vals_cffi) # reset the state bit_gen.state = state vals = rng.standard_normal(n) for i in range(n): assert vals[i] == vals_cffi[i]
New Bit Generators
Generator
can be used with user-provided BitGenerator
s. The simplest way to write a new BitGenerator is to examine the pyx file of one of the existing BitGenerators. The key structure that must be provided is the capsule
which contains a PyCapsule
to a struct pointer of type bitgen_t
,
typedef struct bitgen { void *state; uint64_t (*next_uint64)(void *st); uint32_t (*next_uint32)(void *st); double (*next_double)(void *st); uint64_t (*next_raw)(void *st); } bitgen_t;
which provides 5 pointers. The first is an opaque pointer to the data structure used by the BitGenerators. The next three are function pointers which return the next 64- and 32-bit unsigned integers, the next random double and the next raw value. This final function is used for testing and so can be set to the next 64-bit unsigned integer function if not needed. Functions inside Generator
use this structure as in
bitgen_state->next_uint64(bitgen_state->state)
Examples
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/random/extending.html