numpy.bitwise_xor
-
numpy.bitwise_xor(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'bitwise_xor'>
-
Compute the bit-wise XOR of two arrays element-wise.
Computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator
^
.- Parameters
-
-
x1, x2array_like
-
Only integer and boolean types are handled. If
x1.shape != x2.shape
, they must be broadcastable to a common shape (which becomes the shape of the output). -
outndarray, None, or tuple of ndarray and None, optional
-
A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
-
wherearray_like, optional
-
This condition is broadcast over the input. At locations where the condition is True, the
out
array will be set to the ufunc result. Elsewhere, theout
array will retain its original value. Note that if an uninitializedout
array is created via the defaultout=None
, locations within it where the condition is False will remain uninitialized. - **kwargs
-
For other keyword-only arguments, see the ufunc docs.
-
- Returns
-
-
outndarray or scalar
-
Result. This is a scalar if both
x1
andx2
are scalars.
-
See also
-
logical_xor
-
bitwise_and
-
bitwise_or
-
binary_repr
-
Return the binary representation of the input number as a string.
Examples
The number 13 is represented by
00001101
. Likewise, 17 is represented by00010001
. The bit-wise XOR of 13 and 17 is therefore00011100
, or 28:>>> np.bitwise_xor(13, 17) 28 >>> np.binary_repr(28) '11100'
>>> np.bitwise_xor(31, 5) 26 >>> np.bitwise_xor([31,3], 5) array([26, 6])
>>> np.bitwise_xor([31,3], [5,6]) array([26, 5]) >>> np.bitwise_xor([True, True], [False, True]) array([ True, False])
The
^
operator can be used as a shorthand fornp.bitwise_xor
on ndarrays.>>> x1 = np.array([True, True]) >>> x2 = np.array([False, True]) >>> x1 ^ x2 array([ True, False])
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/generated/numpy.bitwise_xor.html