numpy.concatenate
-
numpy.concatenate((a1, a2, ...), axis=0, out=None, dtype=None, casting="same_kind")
-
Join a sequence of arrays along an existing axis.
- Parameters
-
-
a1, a2, …sequence of array_like
-
The arrays must have the same shape, except in the dimension corresponding to
axis
(the first, by default). -
axisint, optional
-
The axis along which the arrays will be joined. If axis is None, arrays are flattened before use. Default is 0.
-
outndarray, optional
-
If provided, the destination to place the result. The shape must be correct, matching that of what concatenate would have returned if no out argument were specified.
-
dtypestr or dtype
-
If provided, the destination array will have this dtype. Cannot be provided together with
out
.New in version 1.20.0.
-
casting{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional
-
Controls what kind of data casting may occur. Defaults to ‘same_kind’.
New in version 1.20.0.
-
- Returns
-
-
resndarray
-
The concatenated array.
-
See also
-
ma.concatenate
-
Concatenate function that preserves input masks.
-
array_split
-
Split an array into multiple sub-arrays of equal or near-equal size.
-
split
-
Split array into a list of multiple sub-arrays of equal size.
-
hsplit
-
Split array into multiple sub-arrays horizontally (column wise).
-
vsplit
-
Split array into multiple sub-arrays vertically (row wise).
-
dsplit
-
Split array into multiple sub-arrays along the 3rd axis (depth).
-
stack
-
Stack a sequence of arrays along a new axis.
-
block
-
Assemble arrays from blocks.
-
hstack
-
Stack arrays in sequence horizontally (column wise).
-
vstack
-
Stack arrays in sequence vertically (row wise).
-
dstack
-
Stack arrays in sequence depth wise (along third dimension).
-
column_stack
-
Stack 1-D arrays as columns into a 2-D array.
Notes
When one or more of the arrays to be concatenated is a MaskedArray, this function will return a MaskedArray object instead of an ndarray, but the input masks are not preserved. In cases where a MaskedArray is expected as input, use the ma.concatenate function from the masked array module instead.
Examples
>>> a = np.array([[1, 2], [3, 4]]) >>> b = np.array([[5, 6]]) >>> np.concatenate((a, b), axis=0) array([[1, 2], [3, 4], [5, 6]]) >>> np.concatenate((a, b.T), axis=1) array([[1, 2, 5], [3, 4, 6]]) >>> np.concatenate((a, b), axis=None) array([1, 2, 3, 4, 5, 6])
This function will not preserve masking of MaskedArray inputs.
>>> a = np.ma.arange(3) >>> a[1] = np.ma.masked >>> b = np.arange(2, 5) >>> a masked_array(data=[0, --, 2], mask=[False, True, False], fill_value=999999) >>> b array([2, 3, 4]) >>> np.concatenate([a, b]) masked_array(data=[0, 1, 2, 2, 3, 4], mask=False, fill_value=999999) >>> np.ma.concatenate([a, b]) masked_array(data=[0, --, 2, 2, 3, 4], mask=[False, True, False, False, False, False], fill_value=999999)
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/generated/numpy.concatenate.html