xtabs
Cross Tabulation
Description
Create a contingency table (optionally a sparse matrix) from cross-classifying factors, usually contained in a data frame, using a formula interface.
Usage
xtabs(formula = ~., data = parent.frame(), subset, sparse = FALSE, na.action, addNA = FALSE, exclude = if(!addNA) c(NA, NaN), drop.unused.levels = FALSE) ## S3 method for class 'xtabs' print(x, na.print = "", ...)
Arguments
formula | a formula object with the cross-classifying variables (separated by |
data | an optional matrix or data frame (or similar: see |
subset | an optional vector specifying a subset of observations to be used. |
sparse | logical specifying if the result should be a sparse matrix, i.e., inheriting from |
na.action | a |
addNA | logical indicating if |
exclude | a vector of values to be excluded when forming the set of levels of the classifying factors. |
drop.unused.levels | a logical indicating whether to drop unused levels in the classifying factors. If this is |
x | an object of class |
na.print | character string (or |
... | further arguments passed to or from other methods. |
Details
There is a summary
method for contingency table objects created by table
or xtabs(*, sparse = FALSE)
, which gives basic information and performs a chi-squared test for independence of factors (note that the function chisq.test
currently only handles 2-d tables).
If a left hand side is given in formula
, its entries are simply summed over the cells corresponding to the right hand side; this also works if the lhs does not give counts.
For variables in formula
which are factors, exclude
must be specified explicitly; the default exclusions will not be used.
In R versions before 3.4.0, e.g., when na.action = na.pass
, sometimes zeroes (0
) were returned instead of NA
s.
Note that when addNA
is false as by default, and na.action
is not specified (or set to NULL
), in effect na.action =
getOption("na.action", default=na.omit)
is used; see also the examples.
Value
By default, when sparse = FALSE
, a contingency table in array representation of S3 class c("xtabs",
"table")
, with a "call"
attribute storing the matched call.
When sparse = TRUE
, a sparse numeric matrix, specifically an object of S4 class dgTMatrix
from package Matrix.
See Also
table
for traditional cross-tabulation, and as.data.frame.table
which is the inverse operation of xtabs
(see the DF
example below).
sparseMatrix
on sparse matrices in package Matrix.
Examples
## 'esoph' has the frequencies of cases and controls for all levels of ## the variables 'agegp', 'alcgp', and 'tobgp'. xtabs(cbind(ncases, ncontrols) ~ ., data = esoph) ## Output is not really helpful ... flat tables are better: ftable(xtabs(cbind(ncases, ncontrols) ~ ., data = esoph)) ## In particular if we have fewer factors ... ftable(xtabs(cbind(ncases, ncontrols) ~ agegp, data = esoph)) ## This is already a contingency table in array form. DF <- as.data.frame(UCBAdmissions) ## Now 'DF' is a data frame with a grid of the factors and the counts ## in variable 'Freq'. DF ## Nice for taking margins ... xtabs(Freq ~ Gender + Admit, DF) ## And for testing independence ... summary(xtabs(Freq ~ ., DF)) ## with NA's DN <- DF; DN[cbind(6:9, c(1:2,4,1))] <- NA DN # 'Freq' is missing only for (Rejected, Female, B) tools::assertError(# 'na.fail' should fail : xtabs(Freq ~ Gender + Admit, DN, na.action=na.fail), verbose=TRUE) op <- options(na.action = "na.omit") # the "factory" default (xtabs(Freq ~ Gender + Admit, DN) -> xtD) noC <- function(O) `attr<-`(O, "call", NULL) ident_noC <- function(x,y) identical(noC(x), noC(y)) stopifnot(exprs = { ident_noC(xtD, xtabs(Freq ~ Gender + Admit, DN, na.action = na.omit)) ident_noC(xtD, xtabs(Freq ~ Gender + Admit, DN, na.action = NULL)) }) xtabs(Freq ~ Gender + Admit, DN, na.action = na.pass) ## The Female:Rejected combination has NA 'Freq' (and NA prints 'invisibly' as "") (xtNA <- xtabs(Freq ~ Gender + Admit, DN, addNA = TRUE)) # ==> count NAs ## show NA's better via na.print = ".." : print(xtNA, na.print= "NA") ## Create a nice display for the warp break data. warpbreaks$replicate <- rep_len(1:9, 54) ftable(xtabs(breaks ~ wool + tension + replicate, data = warpbreaks)) ### ---- Sparse Examples ---- if(require("Matrix")) withAutoprint({ ## similar to "nlme"s 'ergoStool' : d.ergo <- data.frame(Type = paste0("T", rep(1:4, 9*4)), Subj = gl(9, 4, 36*4)) xtabs(~ Type + Subj, data = d.ergo) # 4 replicates each set.seed(15) # a subset of cases: xtabs(~ Type + Subj, data = d.ergo[sample(36, 10), ], sparse = TRUE) ## Hypothetical two-level setup: inner <- factor(sample(letters[1:25], 100, replace = TRUE)) inout <- factor(sample(LETTERS[1:5], 25, replace = TRUE)) fr <- data.frame(inner = inner, outer = inout[as.integer(inner)]) xtabs(~ inner + outer, fr, sparse = TRUE) })
Copyright (©) 1999–2012 R Foundation for Statistical Computing.
Licensed under the GNU General Public License.