clusGap
Gap Statistic for Estimating the Number of Clusters
Description
clusGap()
calculates a goodness of clustering measure, the “gap” statistic. For each number of clusters k, it compares log(W(k)) with E*[log(W(k))] where the latter is defined via bootstrapping, i.e., simulating from a reference (H_0) distribution, a uniform distribution on the hypercube determined by the ranges of x
, after first centering, and then svd
(aka ‘PCA’)-rotating them when (as by default) spaceH0 = "scaledPCA"
.
maxSE(f, SE.f)
determines the location of the maximum of f
, taking a “1-SE rule” into account for the *SE*
methods. The default method "firstSEmax"
looks for the smallest k such that its value f(k) is not more than 1 standard error away from the first local maximum. This is similar but not the same as "Tibs2001SEmax"
, Tibshirani et al's recommendation of determining the number of clusters from the gap statistics and their standard deviations.
Usage
clusGap(x, FUNcluster, K.max, B = 100, d.power = 1, spaceH0 = c("scaledPCA", "original"), verbose = interactive(), ...) maxSE(f, SE.f, method = c("firstSEmax", "Tibs2001SEmax", "globalSEmax", "firstmax", "globalmax"), SE.factor = 1) ## S3 method for class 'clusGap' print(x, method = "firstSEmax", SE.factor = 1, ...) ## S3 method for class 'clusGap' plot(x, type = "b", xlab = "k", ylab = expression(Gap[k]), main = NULL, do.arrows = TRUE, arrowArgs = list(col="red3", length=1/16, angle=90, code=3), ...)
Arguments
x | numeric matrix or |
FUNcluster | a |
K.max | the maximum number of clusters to consider, must be at least two. |
B | integer, number of Monte Carlo (“bootstrap”) samples. |
d.power | a positive integer specifying the power p which is applied to the euclidean distances ( |
spaceH0 | a |
verbose | integer or logical, determining if “progress” output should be printed. The default prints one bit per bootstrap sample. |
... | (for |
f | numeric vector of ‘function values’, of length K, whose (“1 SE respected”) maximum we want. |
SE.f | numeric vector of length K of standard errors of |
method | character string indicating how the “optimal” number of clusters, k^, is computed from the gap statistics (and their standard deviations), or more generally how the location k^ of the maximum of f[k] should be determined.
See the examples for a comparison in a simple case. |
SE.factor | [When |
type, xlab, ylab, main | arguments with the same meaning as in |
do.arrows | logical indicating if (1 SE -)“error bars” should be drawn, via |
arrowArgs | a list of arguments passed to |
Details
The main result <res>$Tab[,"gap"]
of course is from bootstrapping aka Monte Carlo simulation and hence random, or equivalently, depending on the initial random seed (see set.seed()
). On the other hand, in our experience, using B = 500
gives quite precise results such that the gap plot is basically unchanged after an another run.
Value
clusGap(..)
returns an object of S3 class "clusGap"
, basically a list with components
Tab | a matrix with |
call | the |
spaceH0 | the |
n | number of observations, i.e., |
B | input |
FUNcluster | input function |
Author(s)
This function is originally based on the functions gap
of (Bioconductor) package SAGx by Per Broberg, gapStat()
from former package SLmisc by Matthias Kohl and ideas from gap()
and its methods of package lga by Justin Harrington.
The current implementation is by Martin Maechler.
The implementation of spaceH0 = "original"
is based on code proposed by Juan Gonzalez.
References
Tibshirani, R., Walther, G. and Hastie, T. (2001). Estimating the number of data clusters via the Gap statistic. Journal of the Royal Statistical Society B, 63, 411–423.
Tibshirani, R., Walther, G. and Hastie, T. (2000). Estimating the number of clusters in a dataset via the Gap statistic. Technical Report. Stanford.
Dudoit, S. and Fridlyand, J. (2002) A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology 3(7). doi: 10.1186/gb-2002-3-7-research0036
Per Broberg (2006). SAGx: Statistical Analysis of the GeneChip. R package version 1.9.7. http://www.bioconductor.org/packages/release/bioc/html/SAGx.html
See Also
silhouette
for a much simpler less sophisticated goodness of clustering measure.
cluster.stats()
in package fpc for alternative measures.
Examples
### --- maxSE() methods ------------------------------------------- (mets <- eval(formals(maxSE)$method)) fk <- c(2,3,5,4,7,8,5,4) sk <- c(1,1,2,1,1,3,1,1)/2 ## use plot.clusGap(): plot(structure(class="clusGap", list(Tab = cbind(gap=fk, SE.sim=sk)))) ## Note that 'firstmax' and 'globalmax' are always at 3 and 6 : sapply(c(1/4, 1,2,4), function(SEf) sapply(mets, function(M) maxSE(fk, sk, method = M, SE.factor = SEf))) ### --- clusGap() ------------------------------------------------- ## ridiculously nicely separated clusters in 3 D : x <- rbind(matrix(rnorm(150, sd = 0.1), ncol = 3), matrix(rnorm(150, mean = 1, sd = 0.1), ncol = 3), matrix(rnorm(150, mean = 2, sd = 0.1), ncol = 3), matrix(rnorm(150, mean = 3, sd = 0.1), ncol = 3)) ## Slightly faster way to use pam (see below) pam1 <- function(x,k) list(cluster = pam(x,k, cluster.only=TRUE)) ## We do not recommend using hier.clustering here, but if you want, ## there is factoextra::hcut () or a cheap version of it hclusCut <- function(x, k, d.meth = "euclidean", ...) list(cluster = cutree(hclust(dist(x, method=d.meth), ...), k=k)) ## You can manually set it before running this : doExtras <- TRUE # or FALSE if(!(exists("doExtras") && is.logical(doExtras))) doExtras <- cluster:::doExtras() if(doExtras) { ## Note we use B = 60 in the following examples to keep them "speedy". ## ---- rather keep the default B = 500 for your analysis! ## note we can pass 'nstart = 20' to kmeans() : gskmn <- clusGap(x, FUN = kmeans, nstart = 20, K.max = 8, B = 60) gskmn #-> its print() method plot(gskmn, main = "clusGap(., FUN = kmeans, n.start=20, B= 60)") set.seed(12); system.time( gsPam0 <- clusGap(x, FUN = pam, K.max = 8, B = 60) ) set.seed(12); system.time( gsPam1 <- clusGap(x, FUN = pam1, K.max = 8, B = 60) ) ## and show that it gives the "same": not.eq <- c("call", "FUNcluster"); n <- names(gsPam0) eq <- n[!(n %in% not.eq)] stopifnot(identical(gsPam1[eq], gsPam0[eq])) print(gsPam1, method="globalSEmax") print(gsPam1, method="globalmax") print(gsHc <- clusGap(x, FUN = hclusCut, K.max = 8, B = 60)) }# end {doExtras} gs.pam.RU <- clusGap(ruspini, FUN = pam1, K.max = 8, B = 60) gs.pam.RU plot(gs.pam.RU, main = "Gap statistic for the 'ruspini' data") mtext("k = 4 is best .. and k = 5 pretty close") ## This takes a minute.. ## No clustering ==> k = 1 ("one cluster") should be optimal: Z <- matrix(rnorm(256*3), 256,3) gsP.Z <- clusGap(Z, FUN = pam1, K.max = 8, B = 200) plot(gsP.Z, main = "clusGap(<iid_rnorm_p=3>) ==> k = 1 cluster is optimal") gsP.Z
Copyright (©) 1999–2012 R Foundation for Statistical Computing.
Licensed under the GNU General Public License.