corAR1
AR(1) Correlation Structure
Description
This function is a constructor for the corAR1
class, representing an autocorrelation structure of order 1. Objects created using this constructor must later be initialized using the appropriate Initialize
method.
Usage
corAR1(value, form, fixed)
Arguments
value | the value of the lag 1 autocorrelation, which must be between -1 and 1. Defaults to 0 (no autocorrelation). |
form | a one sided formula of the form |
fixed | an optional logical value indicating whether the coefficients should be allowed to vary in the optimization, or kept fixed at their initial value. Defaults to |
Value
an object of class corAR1
, representing an autocorrelation structure of order 1.
Author(s)
José Pinheiro and Douglas Bates [email protected]
References
Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series Analysis: Forecasting and Control", 3rd Edition, Holden-Day.
Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp. pp. 235, 397.
See Also
ACF.lme
, corARMA
, corClasses
, Dim.corSpatial
, Initialize.corStruct
, summary.corStruct
Examples
## covariate is observation order and grouping factor is Mare cs1 <- corAR1(0.2, form = ~ 1 | Mare) # Pinheiro and Bates, p. 236 cs1AR1 <- corAR1(0.8, form = ~ 1 | Subject) cs1AR1. <- Initialize(cs1AR1, data = Orthodont) corMatrix(cs1AR1.) # Pinheiro and Bates, p. 240 fm1Ovar.lme <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), data = Ovary, random = pdDiag(~sin(2*pi*Time))) fm2Ovar.lme <- update(fm1Ovar.lme, correlation = corAR1()) # Pinheiro and Bates, pp. 255-258: use in gls fm1Dial.gls <- gls(rate ~(pressure + I(pressure^2) + I(pressure^3) + I(pressure^4))*QB, Dialyzer) fm2Dial.gls <- update(fm1Dial.gls, weights = varPower(form = ~ pressure)) fm3Dial.gls <- update(fm2Dial.gls, corr = corAR1(0.771, form = ~ 1 | Subject)) # Pinheiro and Bates use in nlme: # from p. 240 needed on p. 396 fm1Ovar.lme <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), data = Ovary, random = pdDiag(~sin(2*pi*Time))) fm5Ovar.lme <- update(fm1Ovar.lme, corr = corARMA(p = 1, q = 1)) # p. 396 fm1Ovar.nlme <- nlme(follicles~ A+B*sin(2*pi*w*Time)+C*cos(2*pi*w*Time), data=Ovary, fixed=A+B+C+w~1, random=pdDiag(A+B+w~1), start=c(fixef(fm5Ovar.lme), 1) ) # p. 397 fm2Ovar.nlme <- update(fm1Ovar.nlme, corr=corAR1(0.311) )
Copyright (©) 1999–2012 R Foundation for Statistical Computing.
Licensed under the GNU General Public License.