levelplot
Level plots and contour plots
Description
Draws false color level plots and contour plots.
Usage
levelplot(x, data, ...) contourplot(x, data, ...) ## S3 method for class 'formula' levelplot(x, data, allow.multiple = is.null(groups) || outer, outer = TRUE, aspect = "fill", panel = if (useRaster) lattice.getOption("panel.levelplot.raster") else lattice.getOption("panel.levelplot"), prepanel = NULL, scales = list(), strip = TRUE, groups = NULL, xlab, xlim, ylab, ylim, at, cuts = 15, pretty = FALSE, region = TRUE, drop.unused.levels = lattice.getOption("drop.unused.levels"), ..., useRaster = FALSE, lattice.options = NULL, default.scales = list(), default.prepanel = lattice.getOption("prepanel.default.levelplot"), colorkey = region, col.regions, alpha.regions, subset = TRUE) ## S3 method for class 'formula' contourplot(x, data, panel = lattice.getOption("panel.contourplot"), default.prepanel = lattice.getOption("prepanel.default.contourplot"), cuts = 7, labels = TRUE, contour = TRUE, pretty = TRUE, region = FALSE, ...) ## S3 method for class 'table' levelplot(x, data = NULL, aspect = "iso", ..., xlim, ylim) ## S3 method for class 'table' contourplot(x, data = NULL, aspect = "iso", ..., xlim, ylim) ## S3 method for class 'matrix' levelplot(x, data = NULL, aspect = "iso", ..., xlim, ylim, row.values = seq_len(nrow(x)), column.values = seq_len(ncol(x))) ## S3 method for class 'matrix' contourplot(x, data = NULL, aspect = "iso", ..., xlim, ylim, row.values = seq_len(nrow(x)), column.values = seq_len(ncol(x))) ## S3 method for class 'array' levelplot(x, data = NULL, ...) ## S3 method for class 'array' contourplot(x, data = NULL, ...)
Arguments
x | for the Calculations are based on the assumption that all x and y values are evaluated on a grid (defined by their unique values). The function will not return an error if this is not true, but the display might not be meaningful. However, the x and y values need not be equally spaced. Both |
data | For the |
row.values, column.values | Optional vectors of values that define the grid when |
panel | panel function used to create the display, as described in |
aspect | For the |
at | A numeric vector giving breakpoints along the range of
|
col.regions | color vector to be used if regions is TRUE. The general idea is that this should be a color vector of moderately large length (longer than the number of regions. By default this is 100). It is expected that this vector would be gradually varying in color (so that nearby colors would be similar). When the colors are actually chosen, they are chosen to be equally spaced along this vector. When there are more regions than colors in |
alpha.regions | Numeric, specifying alpha transparency (works only on some devices) |
colorkey | A logical flag specifying whether a colorkey is to be drawn alongside the plot, or a list describing the colorkey. The list may contain the following components:
|
contour | A logical flag, indicating whether to draw contour lines. |
cuts | The number of levels the range of |
labels | Typically a logical indicating whether contour lines should be labelled, but other possibilities for more sophisticated control exists. Details are documented in the help page for |
pretty | A logical flag, indicating whether to use pretty cut locations and labels. |
region | A logical flag, indicating whether regions between contour lines should be filled as in a level plot. |
allow.multiple, outer, prepanel, scales, strip, groups, xlab,
xlim, ylab, ylim, drop.unused.levels, lattice.options,
default.scales, subset | These arguments are described in the help page for |
default.prepanel | Fallback prepanel function. See |
... | Further arguments may be supplied. Some are processed by |
useRaster | A logical flag indicating whether raster representations should be used, both for the false color image and the color key (if present). Effectively, setting this to Note that Not all devices support raster images. For devices that appear to lack support, |
Details
These and all other high level Trellis functions have several arguments in common. These are extensively documented only in the help page for xyplot
, which should be consulted to learn more detailed usage.
Other useful arguments are mentioned in the help page for the default panel function panel.levelplot
(these are formally arguments to the panel function, but can be specified in the high level calls directly).
Value
An object of class "trellis"
. The update
method can be used to update components of the object and the print
method (usually called by default) will plot it on an appropriate plotting device.
Author(s)
Deepayan Sarkar [email protected]
References
Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer. http://lmdvr.r-forge.r-project.org/
See Also
xyplot
, Lattice
, panel.levelplot
Examples
x <- seq(pi/4, 5 * pi, length.out = 100) y <- seq(pi/4, 5 * pi, length.out = 100) r <- as.vector(sqrt(outer(x^2, y^2, "+"))) grid <- expand.grid(x=x, y=y) grid$z <- cos(r^2) * exp(-r/(pi^3)) levelplot(z ~ x * y, grid, cuts = 50, scales=list(log="e"), xlab="", ylab="", main="Weird Function", sub="with log scales", colorkey = FALSE, region = TRUE) ## triangular end-points in color key, with a title levelplot(z ~ x * y, grid, col.regions = topo.colors(10), at = c(-Inf, seq(-0.8, 0.8, by = 0.2), Inf)) #S-PLUS example require(stats) attach(environmental) ozo.m <- loess((ozone^(1/3)) ~ wind * temperature * radiation, parametric = c("radiation", "wind"), span = 1, degree = 2) w.marginal <- seq(min(wind), max(wind), length.out = 50) t.marginal <- seq(min(temperature), max(temperature), length.out = 50) r.marginal <- seq(min(radiation), max(radiation), length.out = 4) wtr.marginal <- list(wind = w.marginal, temperature = t.marginal, radiation = r.marginal) grid <- expand.grid(wtr.marginal) grid[, "fit"] <- c(predict(ozo.m, grid)) contourplot(fit ~ wind * temperature | radiation, data = grid, cuts = 10, region = TRUE, xlab = "Wind Speed (mph)", ylab = "Temperature (F)", main = "Cube Root Ozone (cube root ppb)") detach()
Copyright (©) 1999–2012 R Foundation for Statistical Computing.
Licensed under the GNU General Public License.