mahalanobis
Mahalanobis Distance
Description
Returns the squared Mahalanobis distance of all rows in x
and the vector mu = center
with respect to Sigma = cov
. This is (for vector x
) defined as
D^2 = (x - μ)' Σ^-1 (x - μ)
Usage
mahalanobis(x, center, cov, inverted = FALSE, ...)
Arguments
x | vector or matrix of data with, say, p columns. |
center | mean vector of the distribution or second data vector of length p or recyclable to that length. If set to |
cov | covariance matrix (p x p) of the distribution. |
inverted | logical. If |
... | passed to |
See Also
Examples
require(graphics) ma <- cbind(1:6, 1:3) (S <- var(ma)) mahalanobis(c(0, 0), 1:2, S) x <- matrix(rnorm(100*3), ncol = 3) stopifnot(mahalanobis(x, 0, diag(ncol(x))) == rowSums(x*x)) ##- Here, D^2 = usual squared Euclidean distances Sx <- cov(x) D2 <- mahalanobis(x, colMeans(x), Sx) plot(density(D2, bw = 0.5), main="Squared Mahalanobis distances, n=100, p=3") ; rug(D2) qqplot(qchisq(ppoints(100), df = 3), D2, main = expression("Q-Q plot of Mahalanobis" * ~D^2 * " vs. quantiles of" * ~ chi[3]^2)) abline(0, 1, col = 'gray')
Copyright (©) 1999–2012 R Foundation for Statistical Computing.
Licensed under the GNU General Public License.