Weibull The Weibull Distribution
Description
Density, distribution function, quantile function and random generation for the Weibull distribution with parameters shape and scale.
Usage
dweibull(x, shape, scale = 1, log = FALSE) pweibull(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE) qweibull(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE) rweibull(n, shape, scale = 1)
Arguments
x, q | vector of quantiles. |
p | vector of probabilities. |
n | number of observations. If |
shape, scale | shape and scale parameters, the latter defaulting to 1. |
log, log.p | logical; if TRUE, probabilities p are given as log(p). |
lower.tail | logical; if TRUE (default), probabilities are P[X ≤ x], otherwise, P[X > x]. |
Details
The Weibull distribution with shape parameter a and scale parameter b has density given by
f(x) = (a/b) (x/b)^(a-1) exp(- (x/b)^a)
for x > 0. The cumulative distribution function is F(x) = 1 - exp(- (x/b)^a) on x > 0, the mean is E(X) = b Γ(1 + 1/a), and the Var(X) = b^2 * (Γ(1 + 2/a) - (Γ(1 + 1/a))^2).
Value
dweibull gives the density, pweibull gives the distribution function, qweibull gives the quantile function, and rweibull generates random deviates.
Invalid arguments will result in return value NaN, with a warning.
The length of the result is determined by n for rweibull, and is the maximum of the lengths of the numerical arguments for the other functions.
The numerical arguments other than n are recycled to the length of the result. Only the first elements of the logical arguments are used.
Note
The cumulative hazard H(t) = - log(1 - F(t)) is
-pweibull(t, a, b, lower = FALSE, log = TRUE)
which is just H(t) = (t/b)^a.
Source
[dpq]weibull are calculated directly from the definitions. rweibull uses inversion.
References
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.
See Also
Distributions for other standard distributions, including the Exponential which is a special case of the Weibull distribution.
Examples
x <- c(0, rlnorm(50))
all.equal(dweibull(x, shape = 1), dexp(x))
all.equal(pweibull(x, shape = 1, scale = pi), pexp(x, rate = 1/pi))
## Cumulative hazard H():
all.equal(pweibull(x, 2.5, pi, lower.tail = FALSE, log.p = TRUE),
-(x/pi)^2.5, tolerance = 1e-15)
all.equal(qweibull(x/11, shape = 1, scale = pi), qexp(x/11, rate = 1/pi))
Copyright (©) 1999–2012 R Foundation for Statistical Computing.
Licensed under the GNU General Public License.