bdiag
Construct a Block Diagonal Matrix
Description
Build a block diagonal matrix given several building block matrices.
Usage
bdiag(...) .bdiag(lst)
Arguments
... | individual matrices or a |
lst | non-empty |
Details
For non-trivial argument list, bdiag()
calls .bdiag()
. The latter maybe useful to programmers.
Value
A sparse matrix obtained by combining the arguments into a block diagonal matrix.
The value of bdiag()
inherits from class CsparseMatrix
, whereas .bdiag()
returns a TsparseMatrix
.
Note
This function has been written and is efficient for the case of relatively few block matrices which are typically sparse themselves.
It is currently inefficient for the case of many small dense block matrices. For the case of many dense k * k matrices, the bdiag_m()
function in the ‘Examples’ is an order of magnitude faster.
Author(s)
Martin Maechler, built on a version posted by Berton Gunter to R-help; earlier versions have been posted by other authors, notably Scott Chasalow to S-news. Doug Bates's faster implementation builds on TsparseMatrix
objects.
See Also
Diagonal
for constructing matrices of class diagonalMatrix
, or kronecker
which also works for "Matrix"
inheriting matrices.
bandSparse
constructs a banded sparse matrix from its non-zero sub-/super - diagonals.
Note that other CRAN R packages have own versions of bdiag()
which return traditional matrices.
Examples
bdiag(matrix(1:4, 2), diag(3)) ## combine "Matrix" class and traditional matrices: bdiag(Diagonal(2), matrix(1:3, 3,4), diag(3:2)) mlist <- list(1, 2:3, diag(x=5:3), 27, cbind(1,3:6), 100:101) bdiag(mlist) stopifnot(identical(bdiag(mlist), bdiag(lapply(mlist, as.matrix)))) ml <- c(as(matrix((1:24)%% 11 == 0, 6,4),"nMatrix"), rep(list(Diagonal(2, x=TRUE)), 3)) mln <- c(ml, Diagonal(x = 1:3)) stopifnot(is(bdiag(ml), "lsparseMatrix"), is(bdiag(mln),"dsparseMatrix") ) ## random (diagonal-)block-triangular matrices: rblockTri <- function(nb, max.ni, lambda = 3) { .bdiag(replicate(nb, { n <- sample.int(max.ni, 1) tril(Matrix(rpois(n*n, lambda=lambda), n,n)) })) } (T4 <- rblockTri(4, 10, lambda = 1)) image(T1 <- rblockTri(12, 20)) ##' Fast version of Matrix :: .bdiag() -- for the case of *many* (k x k) matrices: ##' @param lmat list(<mat1>, <mat2>, ....., <mat_N>) where each mat_j is a k x k 'matrix' ##' @return a sparse (N*k x N*k) matrix of class \code{"\linkS4class{dgCMatrix}"}. bdiag_m <- function(lmat) { ## Copyright (C) 2016 Martin Maechler, ETH Zurich if(!length(lmat)) return(new("dgCMatrix")) stopifnot(is.list(lmat), is.matrix(lmat[[1]]), (k <- (d <- dim(lmat[[1]]))[1]) == d[2], # k x k all(vapply(lmat, dim, integer(2)) == k)) # all of them N <- length(lmat) if(N * k > .Machine$integer.max) stop("resulting matrix too large; would be M x M, with M=", N*k) M <- as.integer(N * k) ## result: an M x M matrix new("dgCMatrix", Dim = c(M,M), ## 'i :' maybe there's a faster way (w/o matrix indexing), but elegant? i = as.vector(matrix(0L:(M-1L), nrow=k)[, rep(seq_len(N), each=k)]), p = k * 0L:M, x = as.double(unlist(lmat, recursive=FALSE, use.names=FALSE))) } l12 <- replicate(12, matrix(rpois(16, lambda = 6.4), 4,4), simplify=FALSE) dim(T12 <- bdiag_m(l12))# 48 x 48 T12[1:20, 1:20]
Copyright (©) 1999–2012 R Foundation for Statistical Computing.
Licensed under the GNU General Public License.