fdHess
Finite difference Hessian
Description
Evaluate an approximate Hessian and gradient of a scalar function using finite differences.
Usage
fdHess(pars, fun, ..., .relStep = .Machine$double.eps^(1/3), minAbsPar = 0)
Arguments
pars | the numeric values of the parameters at which to evaluate the function |
fun | a function depending on the parameters |
... | Optional additional arguments to |
.relStep | The relative step size to use in the finite differences. It defaults to the cube root of |
minAbsPar | The minimum magnitude of a parameter value that is considered non-zero. It defaults to zero meaning that any non-zero value will be considered different from zero. |
Details
This function uses a second-order response surface design known as a “Koschal design” to determine the parameter values at which the function is evaluated.
Value
A list with components
mean | the value of function |
gradient | an approximate gradient (of length |
Hessian | a matrix whose upper triangle contains an approximate Hessian. |
Author(s)
José Pinheiro and Douglas Bates [email protected]
Examples
(fdH <- fdHess(c(12.3, 2.34), function(x) x[1]*(1-exp(-0.4*x[2])))) stopifnot(length(fdH$ mean) == 1, length(fdH$ gradient) == 2, identical(dim(fdH$ Hessian), c(2L, 2L)))
Copyright (©) 1999–2012 R Foundation for Statistical Computing.
Licensed under the GNU General Public License.