fft
Fast Discrete Fourier Transform (FFT)
Description
Computes the Discrete Fourier Transform (DFT) of an array with a fast algorithm, the “Fast Fourier Transform” (FFT).
Usage
fft(z, inverse = FALSE) mvfft(z, inverse = FALSE)
Arguments
z | a real or complex array containing the values to be transformed. Long vectors are not supported. |
inverse | if |
Value
When z
is a vector, the value computed and returned by fft
is the unnormalized univariate discrete Fourier transform of the sequence of values in z
. Specifically, y <- fft(z)
returns
y[h] = sum_{k=1}^n z[k]*exp(-2*pi*1i*(k-1)*(h-1)/n)
for h = 1, ..., n where n = length(y)
. If inverse
is TRUE
, exp(-2*pi...) is replaced with exp(2*pi...).
When z
contains an array, fft
computes and returns the multivariate (spatial) transform. If inverse
is TRUE
, the (unnormalized) inverse Fourier transform is returned, i.e., if y <- fft(z)
, then z
is fft(y, inverse = TRUE) / length(y)
.
By contrast, mvfft
takes a real or complex matrix as argument, and returns a similar shaped matrix, but with each column replaced by its discrete Fourier transform. This is useful for analyzing vector-valued series.
The FFT is fastest when the length of the series being transformed is highly composite (i.e., has many factors). If this is not the case, the transform may take a long time to compute and will use a large amount of memory.
Source
Uses C translation of Fortran code in Singleton (1979).
References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988). The New S Language. Wadsworth & Brooks/Cole.
Singleton, R. C. (1979). Mixed Radix Fast Fourier Transforms, in Programs for Digital Signal Processing, IEEE Digital Signal Processing Committee eds. IEEE Press.
Cooley, James W., and Tukey, John W. (1965). An algorithm for the machine calculation of complex Fourier series, Mathematics of Computation, 19(90), 297–301. doi: 10.2307/2003354.
See Also
Examples
x <- 1:4 fft(x) fft(fft(x), inverse = TRUE)/length(x) ## Slow Discrete Fourier Transform (DFT) - e.g., for checking the formula fft0 <- function(z, inverse=FALSE) { n <- length(z) if(n == 0) return(z) k <- 0:(n-1) ff <- (if(inverse) 1 else -1) * 2*pi * 1i * k/n vapply(1:n, function(h) sum(z * exp(ff*(h-1))), complex(1)) } relD <- function(x,y) 2* abs(x - y) / abs(x + y) n <- 2^8 z <- complex(n, rnorm(n), rnorm(n)) ## relative differences in the order of 4*10^{-14} : summary(relD(fft(z), fft0(z))) summary(relD(fft(z, inverse=TRUE), fft0(z, inverse=TRUE)))
Copyright (©) 1999–2012 R Foundation for Statistical Computing.
Licensed under the GNU General Public License.