SSasymp
Self-Starting Nls Asymptotic Regression Model
Description
This selfStart
model evaluates the asymptotic regression function and its gradient. It has an initial
attribute that will evaluate initial estimates of the parameters Asym
, R0
, and lrc
for a given set of data.
Note that SSweibull()
generalizes this asymptotic model with an extra parameter.
Usage
SSasymp(input, Asym, R0, lrc)
Arguments
input | a numeric vector of values at which to evaluate the model. |
Asym | a numeric parameter representing the horizontal asymptote on the right side (very large values of |
R0 | a numeric parameter representing the response when |
lrc | a numeric parameter representing the natural logarithm of the rate constant. |
Value
a numeric vector of the same length as input
. It is the value of the expression Asym+(R0-Asym)*exp(-exp(lrc)*input)
. If all of the arguments Asym
, R0
, and lrc
are names of objects, the gradient matrix with respect to these names is attached as an attribute named gradient
.
Author(s)
José Pinheiro and Douglas Bates
See Also
Examples
Lob.329 <- Loblolly[ Loblolly$Seed == "329", ] SSasymp( Lob.329$age, 100, -8.5, -3.2 ) # response only local({ Asym <- 100 ; resp0 <- -8.5 ; lrc <- -3.2 SSasymp( Lob.329$age, Asym, resp0, lrc) # response _and_ gradient }) getInitial(height ~ SSasymp( age, Asym, resp0, lrc), data = Lob.329) ## Initial values are in fact the converged values fm1 <- nls(height ~ SSasymp( age, Asym, resp0, lrc), data = Lob.329) summary(fm1) ## Visualize the SSasymp() model parametrization : xx <- seq(-.3, 5, length.out = 101) ## Asym + (R0-Asym) * exp(-exp(lrc)* x) : yy <- 5 - 4 * exp(-xx / exp(3/4)) stopifnot( all.equal(yy, SSasymp(xx, Asym = 5, R0 = 1, lrc = -3/4)) ) require(graphics) op <- par(mar = c(0, .2, 4.1, 0)) plot(xx, yy, type = "l", axes = FALSE, ylim = c(0,5.2), xlim = c(-.3, 5), xlab = "", ylab = "", lwd = 2, main = quote("Parameters in the SSasymp model " ~ {f[phi](x) == phi[1] + (phi[2]-phi[1])*~e^{-e^{phi[3]}*~x}})) mtext(quote(list(phi[1] == "Asym", phi[2] == "R0", phi[3] == "lrc"))) usr <- par("usr") arrows(usr[1], 0, usr[2], 0, length = 0.1, angle = 25) arrows(0, usr[3], 0, usr[4], length = 0.1, angle = 25) text(usr[2] - 0.2, 0.1, "x", adj = c(1, 0)) text( -0.1, usr[4], "y", adj = c(1, 1)) abline(h = 5, lty = 3) arrows(c(0.35, 0.65), 1, c(0 , 1 ), 1, length = 0.08, angle = 25); text(0.5, 1, quote(1)) y0 <- 1 + 4*exp(-3/4) ; t.5 <- log(2) / exp(-3/4) ; AR2 <- 3 # (Asym + R0)/2 segments(c(1, 1), c( 1, y0), c(1, 0), c(y0, 1), lty = 2, lwd = 0.75) text(1.1, 1/2+y0/2, quote((phi[1]-phi[2])*e^phi[3]), adj = c(0,.5)) axis(2, at = c(1,AR2,5), labels= expression(phi[2], frac(phi[1]+phi[2],2), phi[1]), pos=0, las=1) arrows(c(.6,t.5-.6), AR2, c(0, t.5 ), AR2, length = 0.08, angle = 25) text( t.5/2, AR2, quote(t[0.5])) text( t.5 +.4, AR2, quote({f(t[0.5]) == frac(phi[1]+phi[2],2)}~{} %=>% {}~~ {t[0.5] == frac(log(2), e^{phi[3]})}), adj = c(0, 0.5)) par(op)
Copyright (©) 1999–2012 R Foundation for Statistical Computing.
Licensed under the GNU General Public License.