qr-methods
QR Decomposition – S4 Methods and Generic
Description
The Matrix package provides methods for the QR decomposition of special classes of matrices. There is a generic function which uses qr
as default, but methods defined in this package can take extra arguments. In particular there is an option for determining a fill-reducing permutation of the columns of a sparse, rectangular matrix.
Usage
qr(x, ...) qrR(qr, complete=FALSE, backPermute=TRUE, row.names = TRUE)
Arguments
x | a numeric or complex matrix whose QR decomposition is to be computed. Logical matrices are coerced to numeric. |
qr | a QR decomposition of the type computed by |
complete | logical indicating whether the \bold{R} matrix is to be completed by binding zero-value rows beneath the square upper triangle. |
backPermute | logical indicating if the rows of the \bold{R} matrix should be back permuted such that |
row.names | logical indicating if |
... | further arguments passed to or from other methods |
Methods
- x = "dgCMatrix"
-
QR decomposition of a general sparse double-precision matrix with
nrow(x) >= ncol(x)
. Returns an object of class"sparseQR"
. - x = "sparseMatrix"
-
works via
"dgCMatrix"
.
See Also
qr
; then, the class documentations, mainly sparseQR
, and also dgCMatrix
.
Examples
##------------- example of pivoting -- from base' qraux.Rd ------------- X <- cbind(int = 1, b1=rep(1:0, each=3), b2=rep(0:1, each=3), c1=rep(c(1,0,0), 2), c2=rep(c(0,1,0), 2), c3=rep(c(0,0,1),2)) rownames(X) <- paste0("r", seq_len(nrow(X))) dnX <- dimnames(X) bX <- X # [b]ase version of X X <- as(bX, "sparseMatrix") X # is singular, columns "b2" and "c3" are "extra" stopifnot(identical(dimnames(X), dnX))# some versions changed X's dimnames! c(rankMatrix(X)) # = 4 (not 6) m <- function(.) as(., "matrix") ##----- regular case ------------------------------------------ Xr <- X[ , -c(3,6)] # the "regular" (non-singular) version of X stopifnot(rankMatrix(Xr) == ncol(Xr)) Y <- cbind(y <- setNames(1:6, paste0("y", 1:6))) ## regular case: qXr <- qr( Xr) qxr <- qr(m(Xr)) qxrLA <- qr(m(Xr), LAPACK=TRUE) # => qr.fitted(), qr.resid() not supported qcfXy <- qr.coef (qXr, y) # vector qcfXY <- qr.coef (qXr, Y) # 4x1 dgeMatrix cf <- c(int=6, b1=-3, c1=-2, c2=-1) doExtras <- interactive() || nzchar(Sys.getenv("R_MATRIX_CHECK_EXTRA")) || identical("true", unname(Sys.getenv("R_PKG_CHECKING_doExtras"))) tolE <- if(doExtras) 1e-15 else 1e-13 stopifnot(exprs = { all.equal(qr.coef(qxr, y), cf, tol=tolE) all.equal(qr.coef(qxrLA,y), cf, tol=tolE) all.equal(qr.coef(qxr, Y), m(cf), tol=tolE) all.equal( qcfXy, cf, tol=tolE) all.equal(m(qcfXY), m(cf), tol=tolE) all.equal(y, qr.fitted(qxr, y), tol=2*tolE) all.equal(y, qr.fitted(qXr, y), tol=2*tolE) all.equal(m(qr.fitted(qXr, Y)), qr.fitted(qxr, Y), tol=tolE) all.equal( qr.resid (qXr, y), qr.resid (qxr, y), tol=tolE) all.equal(m(qr.resid (qXr, Y)), qr.resid (qxr, Y), tol=tolE) }) ##----- rank-deficient ("singular") case ------------------------------------ (qX <- qr( X)) # both @p and @q are non-trivial permutations qx <- qr(m(X)) ; str(qx) # $pivot is non-trivial, too drop0(R. <- qr.R(qX), tol=tolE) # columns *permuted*: c3 b1 .. Q. <- qr.Q(qX) qI <- sort.list(qX@q) # the inverse 'q' permutation (X. <- drop0(Q. %*% R.[, qI], tol=tolE))## just = X, incl. correct colnames stopifnot(all(X - X.) < 8*.Machine$double.eps, ## qrR(.) returns R already "back permuted" (as with qI): identical(R.[, qI], qrR(qX)) ) ## ## In this sense, classical qr.coef() is fine: cfqx <- qr.coef(qx, y) # quite different from nna <- !is.na(cfqx) stopifnot(all.equal(unname(qr.fitted(qx,y)), as.numeric(X[,nna] %*% cfqx[nna]))) ## FIXME: do these make *any* sense? --- should give warnings ! qr.coef(qX, y) qr.coef(qX, Y) rm(m)
Copyright (©) 1999–2012 R Foundation for Statistical Computing.
Licensed under the GNU General Public License.