statsmodels.tsa.statespace.kalman_smoother.SmootherResults
-
class statsmodels.tsa.statespace.kalman_smoother.SmootherResults(model)[source] -
Results from applying the Kalman smoother and/or filter to a state space model.
Parameters: model (Representation) – A Statespace representation -
nobs -
int – Number of observations.
-
k_endog -
int – The dimension of the observation series.
-
k_states -
int – The dimension of the unobserved state process.
-
k_posdef -
int – The dimension of a guaranteed positive definite covariance matrix describing the shocks in the measurement equation.
-
dtype -
dtype – Datatype of representation matrices
-
prefix -
str – BLAS prefix of representation matrices
-
shapes -
dictionary of name:tuple – A dictionary recording the shapes of each of the representation matrices as tuples.
-
endog -
array – The observation vector.
-
design -
array – The design matrix, \(Z\).
-
obs_intercept -
array – The intercept for the observation equation, \(d\).
-
obs_cov -
array – The covariance matrix for the observation equation \(H\).
-
transition -
array – The transition matrix, \(T\).
-
state_intercept -
array – The intercept for the transition equation, \(c\).
-
selection -
array – The selection matrix, \(R\).
-
state_cov -
array – The covariance matrix for the state equation \(Q\).
-
missing -
array of bool – An array of the same size as
endog, filled with boolean values that are True if the corresponding entry inendogis NaN and False otherwise.
-
nmissing -
array of int – An array of size
nobs, where the ith entry is the number (between 0 and k_endog) of NaNs in the ith row of theendogarray.
-
time_invariant -
bool – Whether or not the representation matrices are time-invariant
-
initialization -
str – Kalman filter initialization method.
-
initial_state -
array_like – The state vector used to initialize the Kalamn filter.
-
initial_state_cov -
array_like – The state covariance matrix used to initialize the Kalamn filter.
-
filter_method -
int – Bitmask representing the Kalman filtering method
-
inversion_method -
int – Bitmask representing the method used to invert the forecast error covariance matrix.
-
stability_method -
int – Bitmask representing the methods used to promote numerical stability in the Kalman filter recursions.
-
conserve_memory -
int – Bitmask representing the selected memory conservation method.
-
tolerance -
float – The tolerance at which the Kalman filter determines convergence to steady-state.
-
loglikelihood_burn -
int – The number of initial periods during which the loglikelihood is not recorded.
-
converged -
bool – Whether or not the Kalman filter converged.
-
period_converged -
int – The time period in which the Kalman filter converged.
-
filtered_state -
array – The filtered state vector at each time period.
-
filtered_state_cov -
array – The filtered state covariance matrix at each time period.
-
predicted_state -
array – The predicted state vector at each time period.
-
predicted_state_cov -
array – The predicted state covariance matrix at each time period.
-
kalman_gain -
array – The Kalman gain at each time period.
-
forecasts -
array – The one-step-ahead forecasts of observations at each time period.
-
forecasts_error -
array – The forecast errors at each time period.
-
forecasts_error_cov -
array – The forecast error covariance matrices at each time period.
-
loglikelihood -
array – The loglikelihood values at each time period.
-
collapsed_forecasts -
array – If filtering using collapsed observations, stores the one-step-ahead forecasts of collapsed observations at each time period.
-
collapsed_forecasts_error -
array – If filtering using collapsed observations, stores the one-step-ahead forecast errors of collapsed observations at each time period.
-
collapsed_forecasts_error_cov -
array – If filtering using collapsed observations, stores the one-step-ahead forecast error covariance matrices of collapsed observations at each time period.
-
standardized_forecast_error -
array – The standardized forecast errors
-
smoother_output -
int – Bitmask representing the generated Kalman smoothing output
-
scaled_smoothed_estimator -
array – The scaled smoothed estimator at each time period.
-
scaled_smoothed_estimator_cov -
array – The scaled smoothed estimator covariance matrices at each time period.
-
smoothing_error -
array – The smoothing error covariance matrices at each time period.
-
smoothed_state -
array – The smoothed state at each time period.
-
smoothed_state_cov -
array – The smoothed state covariance matrices at each time period.
-
smoothed_state_autocov -
array – The smoothed state lago-one autocovariance matrices at each time period: \(Cov(\alpha_{t+1}, \alpha_t)\).
-
smoothed_measurement_disturbance -
array – The smoothed measurement at each time period.
-
smoothed_state_disturbance -
array – The smoothed state at each time period.
-
smoothed_measurement_disturbance_cov -
array – The smoothed measurement disturbance covariance matrices at each time period.
-
smoothed_state_disturbance_cov -
array – The smoothed state disturbance covariance matrices at each time period.
Methods
predict([start, end, dynamic])In-sample and out-of-sample prediction for state space models generally update_filter(kalman_filter)Update the filter results update_representation(model[, only_options])Update the results to match a given model update_smoother(smoother)Update the smoother results Attributes
kalman_gainKalman gain matrices smoothed_forecastssmoothed_forecasts_errorsmoothed_forecasts_error_covstandardized_forecasts_errorStandardized forecast errors -
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.kalman_smoother.SmootherResults.html