statsmodels.regression.recursive_ls.RecursiveLS
-
class statsmodels.regression.recursive_ls.RecursiveLS(endog, exog, **kwargs)[source] -
Recursive least squares
Parameters: - endog (array_like) – The observed time-series process \(y\)
- exog (array_like) – Array of exogenous regressors, shaped nobs x k.
Notes
Recursive least squares (RLS) corresponds to expanding window ordinary least squares (OLS).
This model applies the Kalman filter to compute recursive estimates of the coefficients and recursive residuals.
References
[*] Durbin, James, and Siem Jan Koopman. 2012. Time Series Analysis by State Space Methods: Second Edition. Oxford University Press. Methods
filter([return_ssm])Kalman filtering fit()Fits the model by application of the Kalman filter from_formula(formula, data[, subset])Not implemented for state space models hessian(params, *args, **kwargs)Hessian matrix of the likelihood function, evaluated at the given parameters impulse_responses(params[, steps, impulse, …])Impulse response function information(params)Fisher information matrix of model initialize()Initialize (possibly re-initialize) a Model instance. initialize_approximate_diffuse([variance])initialize_known(initial_state, …)initialize_statespace(**kwargs)Initialize the state space representation initialize_stationary()loglike(params, *args, **kwargs)Loglikelihood evaluation loglikeobs(params[, transformed, complex_step])Loglikelihood evaluation observed_information_matrix(params[, …])Observed information matrix opg_information_matrix(params[, …])Outer product of gradients information matrix predict(params[, exog])After a model has been fit predict returns the fitted values. prepare_data()Prepare data for use in the state space representation score(params, *args, **kwargs)Compute the score function at params. score_obs(params[, method, transformed, …])Compute the score per observation, evaluated at params set_conserve_memory([conserve_memory])Set the memory conservation method set_filter_method([filter_method])Set the filtering method set_inversion_method([inversion_method])Set the inversion method set_smoother_output([smoother_output])Set the smoother output set_stability_method([stability_method])Set the numerical stability method simulate(params, nsimulations[, …])Simulate a new time series following the state space model simulation_smoother([simulation_output])Retrieve a simulation smoother for the state space model. smooth([return_ssm])Kalman smoothing transform_jacobian(unconstrained[, …])Jacobian matrix for the parameter transformation function transform_params(unconstrained)Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation untransform_params(constrained)Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer update(params, **kwargs)Update the parameters of the model Attributes
endog_namesNames of endogenous variables exog_namesinitial_varianceinitializationloglikelihood_burnparam_names(list of str) List of human readable parameter names (for parameters actually included in the model). start_params(array) Starting parameters for maximum likelihood estimation. tolerance
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.regression.recursive_ls.RecursiveLS.html