statsmodels.multivariate.multivariate_ols._MultivariateOLS
-
class statsmodels.multivariate.multivariate_ols._MultivariateOLS(endog, exog, missing='none', hasconst=None, **kwargs)[source] -
Multivariate linear model via least squares
Parameters: - endog (array_like) – Dependent variables. A nobs x k_endog array where nobs is the number of observations and k_endog is the number of dependent variables
- exog (array_like) – Independent variables. A nobs x k_exog array where nobs is the number of observations and k_exog is the number of independent variables. An intercept is not included by default and should be added by the user (models specified using a formula include an intercept by default)
-
endog -
array – See Parameters.
-
exog -
array – See Parameters.
Methods
fit([method])Fit a model to data. from_formula(formula, data[, subset, drop_cols])Create a Model from a formula and dataframe. predict(params[, exog])After a model has been fit predict returns the fitted values. Attributes
endog_namesNames of endogenous variables exog_namesNames of exogenous variables
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.multivariate.multivariate_ols._MultivariateOLS.html