statsmodels.regression.linear_model.OLSResults.outlier_test
-
OLSResults.outlier_test(method='bonf', alpha=0.05, labels=None, order=False, cutoff=None)[source] -
Test observations for outliers according to method
Parameters: -
method (str) –
-
bonferroni: one-step correction -
sidak: one-step correction -
holm-sidak: -
holm: -
simes-hochberg: -
hommel: -
fdr_bh: Benjamini/Hochberg -
fdr_by: Benjamini/Yekutieli
See
statsmodels.stats.multitest.multipletestsfor details. -
- alpha (float) – familywise error rate
-
labels (None or array_like) – If
labelsis not None, then it will be used as index to the returned pandas DataFrame. See also Returns below - order (bool) – Whether or not to order the results by the absolute value of the studentized residuals. If labels are provided they will also be sorted.
- cutoff (None or float in [0, 1]) – If cutoff is not None, then the return only includes observations with multiple testing corrected p-values strictly below the cutoff. The returned array or dataframe can be empty if t
Returns: table – Returns either an ndarray or a DataFrame if labels is not None. Will attempt to get labels from model_results if available. The columns are the Studentized residuals, the unadjusted p-value, and the corrected p-value according to method.
Return type: ndarray or DataFrame
Notes
The unadjusted p-value is stats.t.sf(abs(resid), df) where df = df_resid - 1.
-
method (str) –
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.regression.linear_model.OLSResults.outlier_test.html