statsmodels.discrete.discrete_model.CountModel
-
class statsmodels.discrete.discrete_model.CountModel(endog, exog, offset=None, exposure=None, missing='none', **kwargs)
[source] -
Methods
cdf
(X)The cumulative distribution function of the model. cov_params_func_l1
(likelihood_model, xopt, …)Computes cov_params on a reduced parameter space corresponding to the nonzero parameters resulting from the l1 regularized fit. fit
([start_params, method, maxiter, …])Fit the model using maximum likelihood. fit_regularized
([start_params, method, …])Fit the model using a regularized maximum likelihood. from_formula
(formula, data[, subset, drop_cols])Create a Model from a formula and dataframe. hessian
(params)The Hessian matrix of the model information
(params)Fisher information matrix of model initialize
()Initialize is called by statsmodels.model.LikelihoodModel.__init__ and should contain any preprocessing that needs to be done for a model. loglike
(params)Log-likelihood of model. pdf
(X)The probability density (mass) function of the model. predict
(params[, exog, exposure, offset, linear])Predict response variable of a count model given exogenous variables. score
(params)Score vector of model. Attributes
endog_names
Names of endogenous variables exog_names
Names of exogenous variables
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.discrete.discrete_model.CountModel.html