statsmodels.discrete.discrete_model.Probit.score_obs
-
Probit.score_obs(params)
[source] -
Probit model Jacobian for each observation
Parameters: params (array-like) – The parameters of the model Returns: jac – The derivative of the loglikelihood for each observation evaluated at params
.Return type: array-like Notes
\[\frac{\partial\ln L_{i}}{\partial\beta}=\left[\frac{q_{i}\phi\left(q_{i}x_{i}^{\prime}\beta\right)}{\Phi\left(q_{i}x_{i}^{\prime}\beta\right)}\right]x_{i}\]for observations \(i=1,...,n\)
Where \(q=2y-1\). This simplification comes from the fact that the normal distribution is symmetric.
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.discrete.discrete_model.Probit.score_obs.html