Generalized Estimating Equations
Generalized Estimating Equations estimate generalized linear models for panel, cluster or repeated measures data when the observations are possibly correlated withing a cluster but uncorrelated across clusters. It supports estimation of the same one-parameter exponential families as Generalized Linear models (GLM
).
See Module Reference for commands and arguments.
Examples
The following illustrates a Poisson regression with exchangeable correlation within clusters using data on epilepsy seizures.
In [1]: import statsmodels.api as sm In [2]: import statsmodels.formula.api as smf In [3]: data = sm.datasets.get_rdataset('epil', package='MASS').data In [4]: fam = sm.families.Poisson() In [5]: ind = sm.cov_struct.Exchangeable() In [6]: mod = smf.gee("y ~ age + trt + base", "subject", data, ...: cov_struct=ind, family=fam) ...: In [7]: res = mod.fit() In [8]: print(res.summary()) GEE Regression Results =================================================================================== Dep. Variable: y No. Observations: 236 Model: GEE No. clusters: 59 Method: Generalized Min. cluster size: 4 Estimating Equations Max. cluster size: 4 Family: Poisson Mean cluster size: 4.0 Dependence structure: Exchangeable Num. iterations: 51 Date: Mon, 14 May 2018 Scale: 1.000 Covariance type: robust Time: 21:46:28 ==================================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------------ Intercept 0.5730 0.361 1.589 0.112 -0.134 1.280 trt[T.progabide] -0.1519 0.171 -0.888 0.375 -0.487 0.183 age 0.0223 0.011 1.960 0.050 2.11e-06 0.045 base 0.0226 0.001 18.451 0.000 0.020 0.025 ============================================================================== Skew: 3.7823 Kurtosis: 28.6672 Centered skew: 2.7597 Centered kurtosis: 21.9865 ==============================================================================
Several notebook examples of the use of GEE can be found on the Wiki: Wiki notebooks for GEE
References
- KY Liang and S Zeger. “Longitudinal data analysis using generalized linear models”. Biometrika (1986) 73 (1): 13-22.
- S Zeger and KY Liang. “Longitudinal Data Analysis for Discrete and Continuous Outcomes”. Biometrics Vol. 42, No. 1 (Mar., 1986), pp. 121-130
- A Rotnitzky and NP Jewell (1990). “Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data”, Biometrika, 77, 485-497.
- Xu Guo and Wei Pan (2002). “Small sample performance of the score test in GEE”. http://www.sph.umn.edu/faculty1/wp-content/uploads/2012/11/rr2002-013.pdf
- LA Mancl LA, TA DeRouen (2001). A covariance estimator for GEE with improved small-sample properties. Biometrics. 2001 Mar;57(1):126-34.
Module Reference
Model Class
GEE (endog, exog, groups[, time, family, …]) | Estimation of marginal regression models using Generalized Estimating Equations (GEE). |
Results Classes
GEEResults (model, params, cov_params, scale) | This class summarizes the fit of a marginal regression model using GEE. |
GEEMargins (results, args[, kwargs]) | Estimated marginal effects for a regression model fit with GEE. |
Dependence Structures
The dependence structures currently implemented are
CovStruct ([cov_nearest_method]) | A base class for correlation and covariance structures of grouped data. |
Autoregressive ([dist_func]) | A first-order autoregressive working dependence structure. |
Exchangeable () | An exchangeable working dependence structure. |
GlobalOddsRatio (endog_type) | Estimate the global odds ratio for a GEE with ordinal or nominal data. |
Independence ([cov_nearest_method]) | An independence working dependence structure. |
Nested ([cov_nearest_method]) | A nested working dependence structure. |
Families
The distribution families are the same as for GLM, currently implemented are
Family (link, variance) | The parent class for one-parameter exponential families. |
Binomial ([link]) | Binomial exponential family distribution. |
Gamma ([link]) | Gamma exponential family distribution. |
Gaussian ([link]) | Gaussian exponential family distribution. |
InverseGaussian ([link]) | InverseGaussian exponential family. |
NegativeBinomial ([link, alpha]) | Negative Binomial exponential family. |
Poisson ([link]) | Poisson exponential family. |
Link Functions
The link functions are the same as for GLM, currently implemented are the following. Not all link functions are available for each distribution family. The list of available link functions can be obtained by
>>> sm.families.family.<familyname>.links
Link | A generic link function for one-parameter exponential family. |
CDFLink ([dbn]) | The use the CDF of a scipy.stats distribution |
CLogLog | The complementary log-log transform |
Log | The log transform |
Logit | The logit transform |
NegativeBinomial ([alpha]) | The negative binomial link function |
Power ([power]) | The power transform |
cauchy () | The Cauchy (standard Cauchy CDF) transform |
cloglog | The CLogLog transform link function. |
identity () | The identity transform |
inverse_power () | The inverse transform |
inverse_squared () | The inverse squared transform |
log | The log transform |
logit | |
nbinom ([alpha]) | The negative binomial link function. |
probit ([dbn]) | The probit (standard normal CDF) transform |
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/gee.html