statsmodels.nonparametric.kernel_regression.KernelCensoredReg
-
class statsmodels.nonparametric.kernel_regression.KernelCensoredReg(endog, exog, var_type, reg_type, bw='cv_ls', censor_val=0, defaults=<statsmodels.nonparametric._kernel_base.EstimatorSettings object>)[source] -
Nonparametric censored regression.
Calculates the condtional mean
E[y|X]wherey = g(X) + e, where y is left-censored. Left censored variable Y is defined asY = min {Y', L}whereLis the value at whichYis censored andY'is the true value of the variable.Parameters: - endog (list with one element which is array_like) – This is the dependent variable.
- exog (list) – The training data for the independent variable(s) Each element in the list is a separate variable
- dep_type (str) – The type of the dependent variable(s) c: Continuous u: Unordered (Discrete) o: Ordered (Discrete)
- reg_type (str) – Type of regression estimator lc: Local Constant Estimator ll: Local Linear Estimator
- bw (array_like) – Either a user-specified bandwidth or the method for bandwidth selection. cv_ls: cross-validaton least squares aic: AIC Hurvich Estimator
- censor_val (float) – Value at which the dependent variable is censored
- defaults (EstimatorSettings instance, optional) – The default values for the efficient bandwidth estimation
-
bw -
array_like – The bandwidth parameters
Methods
aic_hurvich(bw[, func])Computes the AIC Hurvich criteria for the estimation of the bandwidth. censored(censor_val)cv_loo(bw, func)The cross-validation function with leave-one-out estimator fit([data_predict])Returns the marginal effects at the data_predict points. loo_likelihood()r_squared()Returns the R-Squared for the nonparametric regression. sig_test(var_pos[, nboot, nested_res, pivot])Significance test for the variables in the regression.
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.nonparametric.kernel_regression.KernelCensoredReg.html