statsmodels.tsa.ar_model.AR.loglike
- 
AR.loglike(params)[source] - 
The loglikelihood of an AR(p) process
Parameters: params (array) – The fitted parameters of the AR model Returns: llf – The loglikelihood evaluated at paramsReturn type: float Notes
Contains constant term. If the model is fit by OLS then this returns the conditonal maximum likelihood.
\[\frac{\left(n-p\right)}{2}\left(\log\left(2\pi\right)+\log\left(\sigma^{2}\right)\right)-\frac{1}{\sigma^{2}}\sum_{i}\epsilon_{i}^{2}\]If it is fit by MLE then the (exact) unconditional maximum likelihood is returned.
\[-\frac{n}{2}log\left(2\pi\right)-\frac{n}{2}\log\left(\sigma^{2}\right)+\frac{1}{2}\left|V_{p}^{-1}\right|-\frac{1}{2\sigma^{2}}\left(y_{p}-\mu_{p}\right)^{\prime}V_{p}^{-1}\left(y_{p}-\mu_{p}\right)-\frac{1}{2\sigma^{2}}\sum_{t=p+1}^{n}\epsilon_{i}^{2}\]where
\(\mu_{p}\) is a (
px 1) vector with each element equal to the mean of the AR process and \(\sigma^{2}V_{p}\) is the (pxp) variance-covariance matrix of the firstpobservations. 
    © 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
    http://www.statsmodels.org/stable/generated/statsmodels.tsa.ar_model.AR.loglike.html