SARIMAX: Model selection, missing data
The example mirrors Durbin and Koopman (2012), Chapter 8.4 in application of Box-Jenkins methodology to fit ARMA models. The novel feature is the ability of the model to work on datasets with missing values.
%matplotlib inline
import numpy as np import pandas as pd from scipy.stats import norm import statsmodels.api as sm import matplotlib.pyplot as plt
import requests from io import BytesIO from zipfile import ZipFile # Download the dataset dk = requests.get('http://www.ssfpack.com/files/DK-data.zip').content f = BytesIO(dk) zipped = ZipFile(f) df = pd.read_table( BytesIO(zipped.read('internet.dat')), skiprows=1, header=None, sep='\s+', engine='python', names=['internet','dinternet'] )
Model Selection
As in Durbin and Koopman, we force a number of the values to be missing.
# Get the basic series dta_full = df.dinternet[1:].values dta_miss = dta_full.copy() # Remove datapoints missing = np.r_[6,16,26,36,46,56,66,72,73,74,75,76,86,96]-1 dta_miss[missing] = np.nan
Then we can consider model selection using the Akaike information criteria (AIC), but running the model for each variant and selecting the model with the lowest AIC value.
There are a couple of things to note here:
- When running such a large batch of models, particularly when the autoregressive and moving average orders become large, there is the possibility of poor maximum likelihood convergence. Below we ignore the warnings since this example is illustrative.
- We use the option
enforce_invertibility=False
, which allows the moving average polynomial to be non-invertible, so that more of the models are estimable. - Several of the models do not produce good results, and their AIC value is set to NaN. This is not surprising, as Durbin and Koopman note numerical problems with the high order models.
import warnings aic_full = pd.DataFrame(np.zeros((6,6), dtype=float)) aic_miss = pd.DataFrame(np.zeros((6,6), dtype=float)) warnings.simplefilter('ignore') # Iterate over all ARMA(p,q) models with p,q in [0,6] for p in range(6): for q in range(6): if p == 0 and q == 0: continue # Estimate the model with no missing datapoints mod = sm.tsa.statespace.SARIMAX(dta_full, order=(p,0,q), enforce_invertibility=False) try: res = mod.fit(disp=False) aic_full.iloc[p,q] = res.aic except: aic_full.iloc[p,q] = np.nan # Estimate the model with missing datapoints mod = sm.tsa.statespace.SARIMAX(dta_miss, order=(p,0,q), enforce_invertibility=False) try: res = mod.fit(disp=False) aic_miss.iloc[p,q] = res.aic except: aic_miss.iloc[p,q] = np.nan
For the models estimated over the full (non-missing) dataset, the AIC chooses ARMA(1,1) or ARMA(3,0). Durbin and Koopman suggest the ARMA(1,1) specification is better due to parsimony.
$$ \text{Replication of:}\\ \textbf{Table 8.1} ~~ \text{AIC for different ARMA models.}\\ \newcommand{\r}[1]{{\color{red}{#1}}} \begin{array}{lrrrrrr} \hline q & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline p & {} & {} & {} & {} & {} & {} \\ 0 & 0.00 & 549.81 & 519.87 & 520.27 & 519.38 & 518.86 \\ 1 & 529.24 & \r{514.30} & 516.25 & 514.58 & 515.10 & 516.28 \\ 2 & 522.18 & 516.29 & 517.16 & 515.77 & 513.24 & 514.73 \\ 3 & \r{511.99} & 513.94 & 515.92 & 512.06 & 513.72 & 514.50 \\ 4 & 513.93 & 512.89 & nan & nan & 514.81 & 516.08 \\ 5 & 515.86 & 517.64 & nan & nan & nan & nan \\ \hline \end{array} $$
For the models estimated over missing dataset, the AIC chooses ARMA(1,1)
$$ \text{Replication of:}\\ \textbf{Table 8.2} ~~ \text{AIC for different ARMA models with missing observations.}\\ \begin{array}{lrrrrrr} \hline q & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline p & {} & {} & {} & {} & {} & {} \\ 0 & 0.00 & 488.93 & 464.01 & 463.86 & 462.63 & 463.62 \\ 1 & 468.01 & \r{457.54} & 459.35 & 458.66 & 459.15 & 461.01 \\ 2 & 469.68 & nan & 460.48 & 459.43 & 459.23 & 460.47 \\ 3 & 467.10 & 458.44 & 459.64 & 456.66 & 459.54 & 460.05 \\ 4 & 469.00 & 459.52 & nan & 463.04 & 459.35 & 460.96 \\ 5 & 471.32 & 461.26 & nan & nan & 461.00 & 462.97 \\ \hline \end{array} $$
Note: the AIC values are calculated differently than in Durbin and Koopman, but show overall similar trends.
Postestimation
Using the ARMA(1,1) specification selected above, we perform in-sample prediction and out-of-sample forecasting.
# Statespace mod = sm.tsa.statespace.SARIMAX(dta_miss, order=(1,0,1)) res = mod.fit(disp=False) print(res.summary())
# In-sample one-step-ahead predictions, and out-of-sample forecasts nforecast = 20 predict = res.get_prediction(end=mod.nobs + nforecast) idx = np.arange(len(predict.predicted_mean)) predict_ci = predict.conf_int(alpha=0.5) # Graph fig, ax = plt.subplots(figsize=(12,6)) ax.xaxis.grid() ax.plot(dta_miss, 'k.') # Plot ax.plot(idx[:-nforecast], predict.predicted_mean[:-nforecast], 'gray') ax.plot(idx[-nforecast:], predict.predicted_mean[-nforecast:], 'k--', linestyle='--', linewidth=2) ax.fill_between(idx, predict_ci[:, 0], predict_ci[:, 1], alpha=0.15) ax.set(title='Figure 8.9 - Internet series');
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/examples/notebooks/generated/statespace_sarimax_internet.html