statsmodels.discrete.discrete_model.Probit.hessian

Probit.hessian(params) [source]

Probit model Hessian matrix of the log-likelihood

Parameters: params (array-like) – The parameters of the model
Returns: hess – The Hessian, second derivative of loglikelihood function, evaluated at params
Return type: ndarray, (k_vars, k_vars)

Notes

\[\frac{\partial^{2}\ln L}{\partial\beta\partial\beta^{\prime}}=-\lambda_{i}\left(\lambda_{i}+x_{i}^{\prime}\beta\right)x_{i}x_{i}^{\prime}\]

where

\[\lambda_{i}=\frac{q_{i}\phi\left(q_{i}x_{i}^{\prime}\beta\right)}{\Phi\left(q_{i}x_{i}^{\prime}\beta\right)}\]

and \(q=2y-1\)

© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.discrete.discrete_model.Probit.hessian.html