statsmodels.discrete.discrete_model.MNLogit.score_obs
-
MNLogit.score_obs(params)
[source] -
Jacobian matrix for multinomial logit model log-likelihood
Parameters: params (array) – The parameters of the multinomial logit model. Returns: jac – The derivative of the loglikelihood for each observation evaluated at params
.Return type: array-like Notes
\[\frac{\partial\ln L_{i}}{\partial\beta_{j}}=\left(d_{ij}-\frac{\exp\left(\beta_{j}^{\prime}x_{i}\right)}{\sum_{k=0}^{J}\exp\left(\beta_{k}^{\prime}x_{i}\right)}\right)x_{i}\]for \(j=1,...,J\), for observations \(i=1,...,n\)
In the multinomial model the score vector is K x (J-1) but is returned as a flattened array. The Jacobian has the observations in rows and the flatteded array of derivatives in columns.
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.discrete.discrete_model.MNLogit.score_obs.html