statsmodels.nonparametric.kernel_density.KDEMultivariateConditional
-
class statsmodels.nonparametric.kernel_density.KDEMultivariateConditional(endog, exog, dep_type, indep_type, bw, defaults=<statsmodels.nonparametric._kernel_base.EstimatorSettings object>)
[source] -
Conditional multivariate kernel density estimator.
Calculates
P(Y_1,Y_2,...Y_n | X_1,X_2...X_m) = P(X_1, X_2,...X_n, Y_1, Y_2,..., Y_m)/P(X_1, X_2,..., X_m)
. The conditional density is by definition the ratio of the two densities, see [1].Parameters: - endog (list of ndarrays or 2-D ndarray) – The training data for the dependent variables, used to determine the bandwidth(s). If a 2-D array, should be of shape (num_observations, num_variables). If a list, each list element is a separate observation.
-
exog (list of ndarrays or 2-D ndarray) – The training data for the independent variable; same shape as
endog
. -
dep_type (str) –
The type of the dependent variables:
c : Continuous u : Unordered (Discrete) o : Ordered (Discrete)The string should contain a type specifier for each variable, so for example
dep_type='ccuo'
. -
indep_type (str) – The type of the independent variables; specifed like
dep_type
. -
bw (array_like or str, optional) –
If an array, it is a fixed user-specified bandwidth. If a string, should be one of:
- normal_reference: normal reference rule of thumb (default)
- cv_ml: cross validation maximum likelihood
- cv_ls: cross validation least squares
- defaults (Instance of class EstimatorSettings) – The default values for the efficient bandwidth estimation
-
bw
-
array_like – The bandwidth parameters
See also
References
[1] http://en.wikipedia.org/wiki/Conditional_probability_distribution Examples
>>> import statsmodels.api as sm >>> nobs = 300 >>> c1 = np.random.normal(size=(nobs,1)) >>> c2 = np.random.normal(2,1,size=(nobs,1))
>>> dens_c = sm.nonparametric.KDEMultivariateConditional(endog=[c1], ... exog=[c2], dep_type='c', indep_type='c', bw='normal_reference') >>> dens_c.bw # show computed bandwidth array([ 0.41223484, 0.40976931])
Methods
cdf
([endog_predict, exog_predict])Cumulative distribution function for the conditional density. imse
(bw)The integrated mean square error for the conditional KDE. loo_likelihood
(bw[, func])Returns the leave-one-out conditional likelihood of the data. pdf
([endog_predict, exog_predict])Evaluate the probability density function.
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.nonparametric.kernel_density.KDEMultivariateConditional.html