Class Cipher

Direct Known Subclasses:
NullCipher
public class Cipher
extends Object

This class provides the functionality of a cryptographic cipher for encryption and decryption. It forms the core of the Java Cryptographic Extension (JCE) framework.

In order to create a Cipher object, the application calls the Cipher's getInstance method, and passes the name of the requested transformation to it. Optionally, the name of a provider may be specified.

A transformation is a string that describes the operation (or set of operations) to be performed on the given input, to produce some output. A transformation always includes the name of a cryptographic algorithm (e.g., AES), and may be followed by a feedback mode and padding scheme.

A transformation is of the form:

  • "algorithm/mode/padding" or
  • "algorithm"

(in the latter case, provider-specific default values for the mode and padding scheme are used). For example, the following is a valid transformation:

Cipher c = Cipher.getInstance("AES/CBC/PKCS5Padding");
Using modes such as CFB and OFB, block ciphers can encrypt data in units smaller than the cipher's actual block size. When requesting such a mode, you may optionally specify the number of bits to be processed at a time by appending this number to the mode name as shown in the "AES/CFB8/NoPadding" and "AES/OFB32/PKCS5Padding" transformations. If no such number is specified, a provider-specific default is used. (See the JDK Providers Documentation for the JDK Providers default values.) Thus, block ciphers can be turned into byte-oriented stream ciphers by using an 8 bit mode such as CFB8 or OFB8.

Modes such as Authenticated Encryption with Associated Data (AEAD) provide authenticity assurances for both confidential data and Additional Associated Data (AAD) that is not encrypted. (Please see RFC 5116 for more information on AEAD and AAD algorithms such as GCM/CCM.) Both confidential and AAD data can be used when calculating the authentication tag (similar to a Mac). This tag is appended to the ciphertext during encryption, and is verified on decryption.

AEAD modes such as GCM/CCM perform all AAD authenticity calculations before starting the ciphertext authenticity calculations. To avoid implementations having to internally buffer ciphertext, all AAD data must be supplied to GCM/CCM implementations (via the updateAAD methods) before the ciphertext is processed (via the update and doFinal methods).

Note that GCM mode has a uniqueness requirement on IVs used in encryption with a given key. When IVs are repeated for GCM encryption, such usages are subject to forgery attacks. Thus, after each encryption operation using GCM mode, callers should re-initialize the cipher objects with GCM parameters which have a different IV value.

GCMParameterSpec s = ...;
     cipher.init(..., s);

     // If the GCM parameters were generated by the provider, it can
     // be retrieved by:
     // cipher.getParameters().getParameterSpec(GCMParameterSpec.class);

     cipher.updateAAD(...);  // AAD
     cipher.update(...);     // Multi-part update
     cipher.doFinal(...);    // conclusion of operation

     // Use a different IV value for every encryption
     byte[] newIv = ...;
     s = new GCMParameterSpec(s.getTLen(), newIv);
     cipher.init(..., s);
     ...
The ChaCha20 and ChaCha20-Poly1305 algorithms have a similar requirement for unique nonces with a given key. After each encryption or decryption operation, callers should re-initialize their ChaCha20 or ChaCha20-Poly1305 ciphers with parameters that specify a different nonce value. Please see RFC 7539 for more information on the ChaCha20 and ChaCha20-Poly1305 algorithms.

Every implementation of the Java platform is required to support the following standard Cipher transformations with the keysizes in parentheses:

  • AES/CBC/NoPadding (128)
  • AES/CBC/PKCS5Padding (128)
  • AES/ECB/NoPadding (128)
  • AES/ECB/PKCS5Padding (128)
  • AES/GCM/NoPadding (128)
  • DES/CBC/NoPadding (56)
  • DES/CBC/PKCS5Padding (56)
  • DES/ECB/NoPadding (56)
  • DES/ECB/PKCS5Padding (56)
  • DESede/CBC/NoPadding (168)
  • DESede/CBC/PKCS5Padding (168)
  • DESede/ECB/NoPadding (168)
  • DESede/ECB/PKCS5Padding (168)
  • RSA/ECB/PKCS1Padding (1024, 2048)
  • RSA/ECB/OAEPWithSHA-1AndMGF1Padding (1024, 2048)
  • RSA/ECB/OAEPWithSHA-256AndMGF1Padding (1024, 2048)
These transformations are described in the Cipher section of the Java Security Standard Algorithm Names Specification. Consult the release documentation for your implementation to see if any other transformations are supported.
Since:
1.4
See Also:
KeyGenerator, SecretKey

Fields

Modifier and Type Field Description
static int DECRYPT_MODE

Constant used to initialize cipher to decryption mode.

static int ENCRYPT_MODE

Constant used to initialize cipher to encryption mode.

static int PRIVATE_KEY

Constant used to indicate the to-be-unwrapped key is a "private key".

static int PUBLIC_KEY

Constant used to indicate the to-be-unwrapped key is a "public key".

static int SECRET_KEY

Constant used to indicate the to-be-unwrapped key is a "secret key".

static int UNWRAP_MODE

Constant used to initialize cipher to key-unwrapping mode.

static int WRAP_MODE

Constant used to initialize cipher to key-wrapping mode.

Constructors

Modifier Constructor Description
protected Cipher​(CipherSpi cipherSpi, Provider provider, String transformation)

Creates a Cipher object.

Methods

Modifier and Type Method Description
byte[] doFinal()

Finishes a multiple-part encryption or decryption operation, depending on how this cipher was initialized.

byte[] doFinal​(byte[] input)

Encrypts or decrypts data in a single-part operation, or finishes a multiple-part operation.

int doFinal​(byte[] output, int outputOffset)

Finishes a multiple-part encryption or decryption operation, depending on how this cipher was initialized.

byte[] doFinal​(byte[] input, int inputOffset, int inputLen)

Encrypts or decrypts data in a single-part operation, or finishes a multiple-part operation.

int doFinal​(byte[] input, int inputOffset, int inputLen, byte[] output)

Encrypts or decrypts data in a single-part operation, or finishes a multiple-part operation.

int doFinal​(byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset)

Encrypts or decrypts data in a single-part operation, or finishes a multiple-part operation.

int doFinal​(ByteBuffer input, ByteBuffer output)

Encrypts or decrypts data in a single-part operation, or finishes a multiple-part operation.

String getAlgorithm()

Returns the algorithm name of this Cipher object.

int getBlockSize()

Returns the block size (in bytes).

ExemptionMechanism getExemptionMechanism()

Returns the exemption mechanism object used with this cipher.

static Cipher getInstance​(String transformation)

Returns a Cipher object that implements the specified transformation.

static Cipher getInstance​(String transformation, String provider)

Returns a Cipher object that implements the specified transformation.

static Cipher getInstance​(String transformation, Provider provider)

Returns a Cipher object that implements the specified transformation.

byte[] getIV()

Returns the initialization vector (IV) in a new buffer.

static int getMaxAllowedKeyLength​(String transformation)

Returns the maximum key length for the specified transformation according to the installed JCE jurisdiction policy files.

static AlgorithmParameterSpec getMaxAllowedParameterSpec​(String transformation)

Returns an AlgorithmParameterSpec object which contains the maximum cipher parameter value according to the jurisdiction policy file.

int getOutputSize​(int inputLen)

Returns the length in bytes that an output buffer would need to be in order to hold the result of the next update or doFinal operation, given the input length inputLen (in bytes).

AlgorithmParameters getParameters()

Returns the parameters used with this cipher.

Provider getProvider()

Returns the provider of this Cipher object.

void init​(int opmode, Certificate certificate)

Initializes this cipher with the public key from the given certificate.

void init​(int opmode, Certificate certificate, SecureRandom random)

Initializes this cipher with the public key from the given certificate and a source of randomness.

void init​(int opmode, Key key)

Initializes this cipher with a key.

void init​(int opmode, Key key, AlgorithmParameters params)

Initializes this cipher with a key and a set of algorithm parameters.

void init​(int opmode, Key key, AlgorithmParameters params, SecureRandom random)

Initializes this cipher with a key, a set of algorithm parameters, and a source of randomness.

void init​(int opmode, Key key, SecureRandom random)

Initializes this cipher with a key and a source of randomness.

void init​(int opmode, Key key, AlgorithmParameterSpec params)

Initializes this cipher with a key and a set of algorithm parameters.

void init​(int opmode, Key key, AlgorithmParameterSpec params, SecureRandom random)

Initializes this cipher with a key, a set of algorithm parameters, and a source of randomness.

Key unwrap​(byte[] wrappedKey, String wrappedKeyAlgorithm, int wrappedKeyType)

Unwrap a previously wrapped key.

byte[] update​(byte[] input)

Continues a multiple-part encryption or decryption operation (depending on how this cipher was initialized), processing another data part.

byte[] update​(byte[] input, int inputOffset, int inputLen)

Continues a multiple-part encryption or decryption operation (depending on how this cipher was initialized), processing another data part.

int update​(byte[] input, int inputOffset, int inputLen, byte[] output)

Continues a multiple-part encryption or decryption operation (depending on how this cipher was initialized), processing another data part.

int update​(byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset)

Continues a multiple-part encryption or decryption operation (depending on how this cipher was initialized), processing another data part.

int update​(ByteBuffer input, ByteBuffer output)

Continues a multiple-part encryption or decryption operation (depending on how this cipher was initialized), processing another data part.

void updateAAD​(byte[] src)

Continues a multi-part update of the Additional Authentication Data (AAD).

void updateAAD​(byte[] src, int offset, int len)

Continues a multi-part update of the Additional Authentication Data (AAD), using a subset of the provided buffer.

void updateAAD​(ByteBuffer src)

Continues a multi-part update of the Additional Authentication Data (AAD).

byte[] wrap​(Key key)

Wrap a key.

Methods declared in class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Fields

ENCRYPT_MODE

public static final int ENCRYPT_MODE

Constant used to initialize cipher to encryption mode.

See Also:
Constant Field Values

DECRYPT_MODE

public static final int DECRYPT_MODE

Constant used to initialize cipher to decryption mode.

See Also:
Constant Field Values

WRAP_MODE

public static final int WRAP_MODE

Constant used to initialize cipher to key-wrapping mode.

See Also:
Constant Field Values

UNWRAP_MODE

public static final int UNWRAP_MODE

Constant used to initialize cipher to key-unwrapping mode.

See Also:
Constant Field Values

PUBLIC_KEY

public static final int PUBLIC_KEY

Constant used to indicate the to-be-unwrapped key is a "public key".

See Also:
Constant Field Values

PRIVATE_KEY

public static final int PRIVATE_KEY

Constant used to indicate the to-be-unwrapped key is a "private key".

See Also:
Constant Field Values

SECRET_KEY

public static final int SECRET_KEY

Constant used to indicate the to-be-unwrapped key is a "secret key".

See Also:
Constant Field Values

Constructors

Cipher

protected Cipher(CipherSpi cipherSpi,
                 Provider provider,
                 String transformation)

Creates a Cipher object.

Parameters:
cipherSpi - the delegate
provider - the provider
transformation - the transformation

Methods

getInstance

public static final Cipher getInstance(String transformation)
                                throws NoSuchAlgorithmException,
                                       NoSuchPaddingException

Returns a Cipher object that implements the specified transformation.

This method traverses the list of registered security Providers, starting with the most preferred Provider. A new Cipher object encapsulating the CipherSpi implementation from the first Provider that supports the specified algorithm is returned.

Note that the list of registered providers may be retrieved via the Security.getProviders() method.

Implementation Note:
The JDK Reference Implementation additionally uses the jdk.security.provider.preferred Security property to determine the preferred provider order for the specified algorithm. This may be different than the order of providers returned by Security.getProviders().
Parameters:
transformation - the name of the transformation, e.g., AES/CBC/PKCS5Padding. See the Cipher section in the Java Security Standard Algorithm Names Specification for information about standard transformation names.
Returns:
a cipher that implements the requested transformation
Throws:
NoSuchAlgorithmException - if transformation is null, empty, in an invalid format, or if no Provider supports a CipherSpi implementation for the specified algorithm
NoSuchPaddingException - if transformation contains a padding scheme that is not available
See Also:
Provider

getInstance

public static final Cipher getInstance(String transformation,
                                       String provider)
                                throws NoSuchAlgorithmException,
                                       NoSuchProviderException,
                                       NoSuchPaddingException

Returns a Cipher object that implements the specified transformation.

A new Cipher object encapsulating the CipherSpi implementation from the specified provider is returned. The specified provider must be registered in the security provider list.

Note that the list of registered providers may be retrieved via the Security.getProviders() method.

Parameters:
transformation - the name of the transformation, e.g., AES/CBC/PKCS5Padding. See the Cipher section in the Java Security Standard Algorithm Names Specification for information about standard transformation names.
provider - the name of the provider.
Returns:
a cipher that implements the requested transformation
Throws:
IllegalArgumentException - if the provider is null or empty
NoSuchAlgorithmException - if transformation is null, empty, in an invalid format, or if a CipherSpi implementation for the specified algorithm is not available from the specified provider
NoSuchPaddingException - if transformation contains a padding scheme that is not available
NoSuchProviderException - if the specified provider is not registered in the security provider list
See Also:
Provider

getInstance

public static final Cipher getInstance(String transformation,
                                       Provider provider)
                                throws NoSuchAlgorithmException,
                                       NoSuchPaddingException

Returns a Cipher object that implements the specified transformation.

A new Cipher object encapsulating the CipherSpi implementation from the specified Provider object is returned. Note that the specified Provider object does not have to be registered in the provider list.

Parameters:
transformation - the name of the transformation, e.g., AES/CBC/PKCS5Padding. See the Cipher section in the Java Security Standard Algorithm Names Specification for information about standard transformation names.
provider - the provider.
Returns:
a cipher that implements the requested transformation
Throws:
IllegalArgumentException - if the provider is null
NoSuchAlgorithmException - if transformation is null, empty, in an invalid format, or if a CipherSpi implementation for the specified algorithm is not available from the specified Provider object
NoSuchPaddingException - if transformation contains a padding scheme that is not available
See Also:
Provider

getProvider

public final Provider getProvider()

Returns the provider of this Cipher object.

Returns:
the provider of this Cipher object

getAlgorithm

public final String getAlgorithm()

Returns the algorithm name of this Cipher object.

This is the same name that was specified in one of the getInstance calls that created this Cipher object..

Returns:
the algorithm name of this Cipher object.

getBlockSize

public final int getBlockSize()

Returns the block size (in bytes).

Returns:
the block size (in bytes), or 0 if the underlying algorithm is not a block cipher

getOutputSize

public final int getOutputSize(int inputLen)

Returns the length in bytes that an output buffer would need to be in order to hold the result of the next update or doFinal operation, given the input length inputLen (in bytes).

This call takes into account any unprocessed (buffered) data from a previous update call, padding, and AEAD tagging.

The actual output length of the next update or doFinal call may be smaller than the length returned by this method.

Parameters:
inputLen - the input length (in bytes)
Returns:
the required output buffer size (in bytes)
Throws:
IllegalStateException - if this cipher is in a wrong state (e.g., has not yet been initialized)

getIV

public final byte[] getIV()

Returns the initialization vector (IV) in a new buffer.

This is useful in the case where a random IV was created, or in the context of password-based encryption or decryption, where the IV is derived from a user-supplied password.

Returns:
the initialization vector in a new buffer, or null if the underlying algorithm does not use an IV, or if the IV has not yet been set.

getParameters

public final AlgorithmParameters getParameters()

Returns the parameters used with this cipher.

The returned parameters may be the same that were used to initialize this cipher, or may contain a combination of default and random parameter values used by the underlying cipher implementation if this cipher requires algorithm parameters but was not initialized with any.

Returns:
the parameters used with this cipher, or null if this cipher does not use any parameters.

getExemptionMechanism

public final ExemptionMechanism getExemptionMechanism()

Returns the exemption mechanism object used with this cipher.

Returns:
the exemption mechanism object used with this cipher, or null if this cipher does not use any exemption mechanism.

init

public final void init(int opmode,
                       Key key)
                throws InvalidKeyException

Initializes this cipher with a key.

The cipher is initialized for one of the following four operations: encryption, decryption, key wrapping or key unwrapping, depending on the value of opmode.

If this cipher requires any algorithm parameters that cannot be derived from the given key, the underlying cipher implementation is supposed to generate the required parameters itself (using provider-specific default or random values) if it is being initialized for encryption or key wrapping, and raise an InvalidKeyException if it is being initialized for decryption or key unwrapping. The generated parameters can be retrieved using getParameters or getIV (if the parameter is an IV).

If this cipher requires algorithm parameters that cannot be derived from the input parameters, and there are no reasonable provider-specific default values, initialization will necessarily fail.

If this cipher (including its underlying feedback or padding scheme) requires any random bytes (e.g., for parameter generation), it will get them using the SecureRandom implementation of the highest-priority installed provider as the source of randomness. (If none of the installed providers supply an implementation of SecureRandom, a system-provided source of randomness will be used.)

Note that when a Cipher object is initialized, it loses all previously-acquired state. In other words, initializing a Cipher is equivalent to creating a new instance of that Cipher and initializing it.

Parameters:
opmode - the operation mode of this cipher (this is one of the following: ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE or UNWRAP_MODE)
key - the key
Throws:
InvalidKeyException - if the given key is inappropriate for initializing this cipher, or requires algorithm parameters that cannot be determined from the given key, or if the given key has a keysize that exceeds the maximum allowable keysize (as determined from the configured jurisdiction policy files).
UnsupportedOperationException - if opmode is WRAP_MODE or UNWRAP_MODE but the mode is not implemented by the underlying CipherSpi.

init

public final void init(int opmode,
                       Key key,
                       SecureRandom random)
                throws InvalidKeyException

Initializes this cipher with a key and a source of randomness.

The cipher is initialized for one of the following four operations: encryption, decryption, key wrapping or key unwrapping, depending on the value of opmode.

If this cipher requires any algorithm parameters that cannot be derived from the given key, the underlying cipher implementation is supposed to generate the required parameters itself (using provider-specific default or random values) if it is being initialized for encryption or key wrapping, and raise an InvalidKeyException if it is being initialized for decryption or key unwrapping. The generated parameters can be retrieved using getParameters or getIV (if the parameter is an IV).

If this cipher requires algorithm parameters that cannot be derived from the input parameters, and there are no reasonable provider-specific default values, initialization will necessarily fail.

If this cipher (including its underlying feedback or padding scheme) requires any random bytes (e.g., for parameter generation), it will get them from random.

Note that when a Cipher object is initialized, it loses all previously-acquired state. In other words, initializing a Cipher is equivalent to creating a new instance of that Cipher and initializing it.

Parameters:
opmode - the operation mode of this cipher (this is one of the following: ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE or UNWRAP_MODE)
key - the encryption key
random - the source of randomness
Throws:
InvalidKeyException - if the given key is inappropriate for initializing this cipher, or requires algorithm parameters that cannot be determined from the given key, or if the given key has a keysize that exceeds the maximum allowable keysize (as determined from the configured jurisdiction policy files).
UnsupportedOperationException - if opmode is WRAP_MODE or UNWRAP_MODE but the mode is not implemented by the underlying CipherSpi.

init

public final void init(int opmode,
                       Key key,
                       AlgorithmParameterSpec params)
                throws InvalidKeyException,
                       InvalidAlgorithmParameterException

Initializes this cipher with a key and a set of algorithm parameters.

The cipher is initialized for one of the following four operations: encryption, decryption, key wrapping or key unwrapping, depending on the value of opmode.

If this cipher requires any algorithm parameters and params is null, the underlying cipher implementation is supposed to generate the required parameters itself (using provider-specific default or random values) if it is being initialized for encryption or key wrapping, and raise an InvalidAlgorithmParameterException if it is being initialized for decryption or key unwrapping. The generated parameters can be retrieved using getParameters or getIV (if the parameter is an IV).

If this cipher requires algorithm parameters that cannot be derived from the input parameters, and there are no reasonable provider-specific default values, initialization will necessarily fail.

If this cipher (including its underlying feedback or padding scheme) requires any random bytes (e.g., for parameter generation), it will get them using the SecureRandom implementation of the highest-priority installed provider as the source of randomness. (If none of the installed providers supply an implementation of SecureRandom, a system-provided source of randomness will be used.)

Note that when a Cipher object is initialized, it loses all previously-acquired state. In other words, initializing a Cipher is equivalent to creating a new instance of that Cipher and initializing it.

Parameters:
opmode - the operation mode of this cipher (this is one of the following: ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE or UNWRAP_MODE)
key - the encryption key
params - the algorithm parameters
Throws:
InvalidKeyException - if the given key is inappropriate for initializing this cipher, or its keysize exceeds the maximum allowable keysize (as determined from the configured jurisdiction policy files).
InvalidAlgorithmParameterException - if the given algorithm parameters are inappropriate for this cipher, or this cipher requires algorithm parameters and params is null, or the given algorithm parameters imply a cryptographic strength that would exceed the legal limits (as determined from the configured jurisdiction policy files).
UnsupportedOperationException - if opmode is WRAP_MODE or UNWRAP_MODE but the mode is not implemented by the underlying CipherSpi.

init

public final void init(int opmode,
                       Key key,
                       AlgorithmParameterSpec params,
                       SecureRandom random)
                throws InvalidKeyException,
                       InvalidAlgorithmParameterException

Initializes this cipher with a key, a set of algorithm parameters, and a source of randomness.

The cipher is initialized for one of the following four operations: encryption, decryption, key wrapping or key unwrapping, depending on the value of opmode.

If this cipher requires any algorithm parameters and params is null, the underlying cipher implementation is supposed to generate the required parameters itself (using provider-specific default or random values) if it is being initialized for encryption or key wrapping, and raise an InvalidAlgorithmParameterException if it is being initialized for decryption or key unwrapping. The generated parameters can be retrieved using getParameters or getIV (if the parameter is an IV).

If this cipher requires algorithm parameters that cannot be derived from the input parameters, and there are no reasonable provider-specific default values, initialization will necessarily fail.

If this cipher (including its underlying feedback or padding scheme) requires any random bytes (e.g., for parameter generation), it will get them from random.

Note that when a Cipher object is initialized, it loses all previously-acquired state. In other words, initializing a Cipher is equivalent to creating a new instance of that Cipher and initializing it.

Parameters:
opmode - the operation mode of this cipher (this is one of the following: ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE or UNWRAP_MODE)
key - the encryption key
params - the algorithm parameters
random - the source of randomness
Throws:
InvalidKeyException - if the given key is inappropriate for initializing this cipher, or its keysize exceeds the maximum allowable keysize (as determined from the configured jurisdiction policy files).
InvalidAlgorithmParameterException - if the given algorithm parameters are inappropriate for this cipher, or this cipher requires algorithm parameters and params is null, or the given algorithm parameters imply a cryptographic strength that would exceed the legal limits (as determined from the configured jurisdiction policy files).
UnsupportedOperationException - if opmode is WRAP_MODE or UNWRAP_MODE but the mode is not implemented by the underlying CipherSpi.

init

public final void init(int opmode,
                       Key key,
                       AlgorithmParameters params)
                throws InvalidKeyException,
                       InvalidAlgorithmParameterException

Initializes this cipher with a key and a set of algorithm parameters.

The cipher is initialized for one of the following four operations: encryption, decryption, key wrapping or key unwrapping, depending on the value of opmode.

If this cipher requires any algorithm parameters and params is null, the underlying cipher implementation is supposed to generate the required parameters itself (using provider-specific default or random values) if it is being initialized for encryption or key wrapping, and raise an InvalidAlgorithmParameterException if it is being initialized for decryption or key unwrapping. The generated parameters can be retrieved using getParameters or getIV (if the parameter is an IV).

If this cipher requires algorithm parameters that cannot be derived from the input parameters, and there are no reasonable provider-specific default values, initialization will necessarily fail.

If this cipher (including its underlying feedback or padding scheme) requires any random bytes (e.g., for parameter generation), it will get them using the SecureRandom implementation of the highest-priority installed provider as the source of randomness. (If none of the installed providers supply an implementation of SecureRandom, a system-provided source of randomness will be used.)

Note that when a Cipher object is initialized, it loses all previously-acquired state. In other words, initializing a Cipher is equivalent to creating a new instance of that Cipher and initializing it.

Parameters:
opmode - the operation mode of this cipher (this is one of the following: ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE or UNWRAP_MODE)
key - the encryption key
params - the algorithm parameters
Throws:
InvalidKeyException - if the given key is inappropriate for initializing this cipher, or its keysize exceeds the maximum allowable keysize (as determined from the configured jurisdiction policy files).
InvalidAlgorithmParameterException - if the given algorithm parameters are inappropriate for this cipher, or this cipher requires algorithm parameters and params is null, or the given algorithm parameters imply a cryptographic strength that would exceed the legal limits (as determined from the configured jurisdiction policy files).
UnsupportedOperationException - if opmode is WRAP_MODE or UNWRAP_MODE but the mode is not implemented by the underlying CipherSpi.

init

public final void init(int opmode,
                       Key key,
                       AlgorithmParameters params,
                       SecureRandom random)
                throws InvalidKeyException,
                       InvalidAlgorithmParameterException

Initializes this cipher with a key, a set of algorithm parameters, and a source of randomness.

The cipher is initialized for one of the following four operations: encryption, decryption, key wrapping or key unwrapping, depending on the value of opmode.

If this cipher requires any algorithm parameters and params is null, the underlying cipher implementation is supposed to generate the required parameters itself (using provider-specific default or random values) if it is being initialized for encryption or key wrapping, and raise an InvalidAlgorithmParameterException if it is being initialized for decryption or key unwrapping. The generated parameters can be retrieved using getParameters or getIV (if the parameter is an IV).

If this cipher requires algorithm parameters that cannot be derived from the input parameters, and there are no reasonable provider-specific default values, initialization will necessarily fail.

If this cipher (including its underlying feedback or padding scheme) requires any random bytes (e.g., for parameter generation), it will get them from random.

Note that when a Cipher object is initialized, it loses all previously-acquired state. In other words, initializing a Cipher is equivalent to creating a new instance of that Cipher and initializing it.

Parameters:
opmode - the operation mode of this cipher (this is one of the following: ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE or UNWRAP_MODE)
key - the encryption key
params - the algorithm parameters
random - the source of randomness
Throws:
InvalidKeyException - if the given key is inappropriate for initializing this cipher, or its keysize exceeds the maximum allowable keysize (as determined from the configured jurisdiction policy files).
InvalidAlgorithmParameterException - if the given algorithm parameters are inappropriate for this cipher, or this cipher requires algorithm parameters and params is null, or the given algorithm parameters imply a cryptographic strength that would exceed the legal limits (as determined from the configured jurisdiction policy files).
UnsupportedOperationException - if opmode is WRAP_MODE or UNWRAP_MODE but the mode is not implemented by the underlying CipherSpi.

init

public final void init(int opmode,
                       Certificate certificate)
                throws InvalidKeyException

Initializes this cipher with the public key from the given certificate.

The cipher is initialized for one of the following four operations: encryption, decryption, key wrapping or key unwrapping, depending on the value of opmode.

If the certificate is of type X.509 and has a key usage extension field marked as critical, and the value of the key usage extension field implies that the public key in the certificate and its corresponding private key are not supposed to be used for the operation represented by the value of opmode, an InvalidKeyException is thrown.

If this cipher requires any algorithm parameters that cannot be derived from the public key in the given certificate, the underlying cipher implementation is supposed to generate the required parameters itself (using provider-specific default or random values) if it is being initialized for encryption or key wrapping, and raise an InvalidKeyException if it is being initialized for decryption or key unwrapping. The generated parameters can be retrieved using getParameters or getIV (if the parameter is an IV).

If this cipher requires algorithm parameters that cannot be derived from the input parameters, and there are no reasonable provider-specific default values, initialization will necessarily fail.

If this cipher (including its underlying feedback or padding scheme) requires any random bytes (e.g., for parameter generation), it will get them using the SecureRandom implementation of the highest-priority installed provider as the source of randomness. (If none of the installed providers supply an implementation of SecureRandom, a system-provided source of randomness will be used.)

Note that when a Cipher object is initialized, it loses all previously-acquired state. In other words, initializing a Cipher is equivalent to creating a new instance of that Cipher and initializing it.

Parameters:
opmode - the operation mode of this cipher (this is one of the following: ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE or UNWRAP_MODE)
certificate - the certificate
Throws:
InvalidKeyException - if the public key in the given certificate is inappropriate for initializing this cipher, or this cipher requires algorithm parameters that cannot be determined from the public key in the given certificate, or the keysize of the public key in the given certificate has a keysize that exceeds the maximum allowable keysize (as determined by the configured jurisdiction policy files).
UnsupportedOperationException - if opmode is WRAP_MODE or UNWRAP_MODE but the mode is not implemented by the underlying CipherSpi.

init

public final void init(int opmode,
                       Certificate certificate,
                       SecureRandom random)
                throws InvalidKeyException

Initializes this cipher with the public key from the given certificate and a source of randomness.

The cipher is initialized for one of the following four operations: encryption, decryption, key wrapping or key unwrapping, depending on the value of opmode.

If the certificate is of type X.509 and has a key usage extension field marked as critical, and the value of the key usage extension field implies that the public key in the certificate and its corresponding private key are not supposed to be used for the operation represented by the value of opmode, an InvalidKeyException is thrown.

If this cipher requires any algorithm parameters that cannot be derived from the public key in the given certificate, the underlying cipher implementation is supposed to generate the required parameters itself (using provider-specific default or random values) if it is being initialized for encryption or key wrapping, and raise an InvalidKeyException if it is being initialized for decryption or key unwrapping. The generated parameters can be retrieved using getParameters or getIV (if the parameter is an IV).

If this cipher requires algorithm parameters that cannot be derived from the input parameters, and there are no reasonable provider-specific default values, initialization will necessarily fail.

If this cipher (including its underlying feedback or padding scheme) requires any random bytes (e.g., for parameter generation), it will get them from random.

Note that when a Cipher object is initialized, it loses all previously-acquired state. In other words, initializing a Cipher is equivalent to creating a new instance of that Cipher and initializing it.

Parameters:
opmode - the operation mode of this cipher (this is one of the following: ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE or UNWRAP_MODE)
certificate - the certificate
random - the source of randomness
Throws:
InvalidKeyException - if the public key in the given certificate is inappropriate for initializing this cipher, or this cipher requires algorithm parameters that cannot be determined from the public key in the given certificate, or the keysize of the public key in the given certificate has a keysize that exceeds the maximum allowable keysize (as determined by the configured jurisdiction policy files).
UnsupportedOperationException - if opmode is WRAP_MODE or UNWRAP_MODE but the mode is not implemented by the underlying CipherSpi.

update

public final byte[] update(byte[] input)

Continues a multiple-part encryption or decryption operation (depending on how this cipher was initialized), processing another data part.

The bytes in the input buffer are processed, and the result is stored in a new buffer.

If input has a length of zero, this method returns null.

Parameters:
input - the input buffer
Returns:
the new buffer with the result, or null if the underlying cipher is a block cipher and the input data is too short to result in a new block.
Throws:
IllegalStateException - if this cipher is in a wrong state (e.g., has not been initialized)

update

public final byte[] update(byte[] input,
                           int inputOffset,
                           int inputLen)

Continues a multiple-part encryption or decryption operation (depending on how this cipher was initialized), processing another data part.

The first inputLen bytes in the input buffer, starting at inputOffset inclusive, are processed, and the result is stored in a new buffer.

If inputLen is zero, this method returns null.

Parameters:
input - the input buffer
inputOffset - the offset in input where the input starts
inputLen - the input length
Returns:
the new buffer with the result, or null if the underlying cipher is a block cipher and the input data is too short to result in a new block.
Throws:
IllegalStateException - if this cipher is in a wrong state (e.g., has not been initialized)

update

public final int update(byte[] input,
                        int inputOffset,
                        int inputLen,
                        byte[] output)
                 throws ShortBufferException

Continues a multiple-part encryption or decryption operation (depending on how this cipher was initialized), processing another data part.

The first inputLen bytes in the input buffer, starting at inputOffset inclusive, are processed, and the result is stored in the output buffer.

If the output buffer is too small to hold the result, a ShortBufferException is thrown. In this case, repeat this call with a larger output buffer. Use getOutputSize to determine how big the output buffer should be.

If inputLen is zero, this method returns a length of zero.

Note: this method should be copy-safe, which means the input and output buffers can reference the same byte array and no unprocessed input data is overwritten when the result is copied into the output buffer.

Parameters:
input - the input buffer
inputOffset - the offset in input where the input starts
inputLen - the input length
output - the buffer for the result
Returns:
the number of bytes stored in output
Throws:
IllegalStateException - if this cipher is in a wrong state (e.g., has not been initialized)
ShortBufferException - if the given output buffer is too small to hold the result

update

public final int update(byte[] input,
                        int inputOffset,
                        int inputLen,
                        byte[] output,
                        int outputOffset)
                 throws ShortBufferException

Continues a multiple-part encryption or decryption operation (depending on how this cipher was initialized), processing another data part.

The first inputLen bytes in the input buffer, starting at inputOffset inclusive, are processed, and the result is stored in the output buffer, starting at outputOffset inclusive.

If the output buffer is too small to hold the result, a ShortBufferException is thrown. In this case, repeat this call with a larger output buffer. Use getOutputSize to determine how big the output buffer should be.

If inputLen is zero, this method returns a length of zero.

Note: this method should be copy-safe, which means the input and output buffers can reference the same byte array and no unprocessed input data is overwritten when the result is copied into the output buffer.

Parameters:
input - the input buffer
inputOffset - the offset in input where the input starts
inputLen - the input length
output - the buffer for the result
outputOffset - the offset in output where the result is stored
Returns:
the number of bytes stored in output
Throws:
IllegalStateException - if this cipher is in a wrong state (e.g., has not been initialized)
ShortBufferException - if the given output buffer is too small to hold the result

update

public final int update(ByteBuffer input,
                        ByteBuffer output)
                 throws ShortBufferException

Continues a multiple-part encryption or decryption operation (depending on how this cipher was initialized), processing another data part.

All input.remaining() bytes starting at input.position() are processed. The result is stored in the output buffer. Upon return, the input buffer's position will be equal to its limit; its limit will not have changed. The output buffer's position will have advanced by n, where n is the value returned by this method; the output buffer's limit will not have changed.

If output.remaining() bytes are insufficient to hold the result, a ShortBufferException is thrown. In this case, repeat this call with a larger output buffer. Use getOutputSize to determine how big the output buffer should be.

Note: this method should be copy-safe, which means the input and output buffers can reference the same block of memory and no unprocessed input data is overwritten when the result is copied into the output buffer.

Parameters:
input - the input ByteBuffer
output - the output ByteByffer
Returns:
the number of bytes stored in output
Throws:
IllegalStateException - if this cipher is in a wrong state (e.g., has not been initialized)
IllegalArgumentException - if input and output are the same object
ReadOnlyBufferException - if the output buffer is read-only
ShortBufferException - if there is insufficient space in the output buffer
Since:
1.5

doFinal

public final byte[] doFinal()
                     throws IllegalBlockSizeException,
                            BadPaddingException

Finishes a multiple-part encryption or decryption operation, depending on how this cipher was initialized.

Input data that may have been buffered during a previous update operation is processed, with padding (if requested) being applied. If an AEAD mode such as GCM/CCM is being used, the authentication tag is appended in the case of encryption, or verified in the case of decryption. The result is stored in a new buffer.

Upon finishing, this method resets this cipher object to the state it was in when previously initialized via a call to init. That is, the object is reset and available to encrypt or decrypt (depending on the operation mode that was specified in the call to init) more data.

Note: if any exception is thrown, this cipher object may need to be reset before it can be used again.

Returns:
the new buffer with the result
Throws:
IllegalStateException - if this cipher is in a wrong state (e.g., has not been initialized)
IllegalBlockSizeException - if this cipher is a block cipher, no padding has been requested (only in encryption mode), and the total input length of the data processed by this cipher is not a multiple of block size; or if this encryption algorithm is unable to process the input data provided.
BadPaddingException - if this cipher is in decryption mode, and (un)padding has been requested, but the decrypted data is not bounded by the appropriate padding bytes
AEADBadTagException - if this cipher is decrypting in an AEAD mode (such as GCM/CCM), and the received authentication tag does not match the calculated value

doFinal

public final int doFinal(byte[] output,
                         int outputOffset)
                  throws IllegalBlockSizeException,
                         ShortBufferException,
                         BadPaddingException

Finishes a multiple-part encryption or decryption operation, depending on how this cipher was initialized.

Input data that may have been buffered during a previous update operation is processed, with padding (if requested) being applied. If an AEAD mode such as GCM/CCM is being used, the authentication tag is appended in the case of encryption, or verified in the case of decryption. The result is stored in the output buffer, starting at outputOffset inclusive.

If the output buffer is too small to hold the result, a ShortBufferException is thrown. In this case, repeat this call with a larger output buffer. Use getOutputSize to determine how big the output buffer should be.

Upon finishing, this method resets this cipher object to the state it was in when previously initialized via a call to init. That is, the object is reset and available to encrypt or decrypt (depending on the operation mode that was specified in the call to init) more data.

Note: if any exception is thrown, this cipher object may need to be reset before it can be used again.

Parameters:
output - the buffer for the result
outputOffset - the offset in output where the result is stored
Returns:
the number of bytes stored in output
Throws:
IllegalStateException - if this cipher is in a wrong state (e.g., has not been initialized)
IllegalBlockSizeException - if this cipher is a block cipher, no padding has been requested (only in encryption mode), and the total input length of the data processed by this cipher is not a multiple of block size; or if this encryption algorithm is unable to process the input data provided.
ShortBufferException - if the given output buffer is too small to hold the result
BadPaddingException - if this cipher is in decryption mode, and (un)padding has been requested, but the decrypted data is not bounded by the appropriate padding bytes
AEADBadTagException - if this cipher is decrypting in an AEAD mode (such as GCM/CCM), and the received authentication tag does not match the calculated value

doFinal

public final byte[] doFinal(byte[] input)
                     throws IllegalBlockSizeException,
                            BadPaddingException

Encrypts or decrypts data in a single-part operation, or finishes a multiple-part operation. The data is encrypted or decrypted, depending on how this cipher was initialized.

The bytes in the input buffer, and any input bytes that may have been buffered during a previous update operation, are processed, with padding (if requested) being applied. If an AEAD mode such as GCM/CCM is being used, the authentication tag is appended in the case of encryption, or verified in the case of decryption. The result is stored in a new buffer.

Upon finishing, this method resets this cipher object to the state it was in when previously initialized via a call to init. That is, the object is reset and available to encrypt or decrypt (depending on the operation mode that was specified in the call to init) more data.

Note: if any exception is thrown, this cipher object may need to be reset before it can be used again.

Parameters:
input - the input buffer
Returns:
the new buffer with the result
Throws:
IllegalStateException - if this cipher is in a wrong state (e.g., has not been initialized)
IllegalBlockSizeException - if this cipher is a block cipher, no padding has been requested (only in encryption mode), and the total input length of the data processed by this cipher is not a multiple of block size; or if this encryption algorithm is unable to process the input data provided.
BadPaddingException - if this cipher is in decryption mode, and (un)padding has been requested, but the decrypted data is not bounded by the appropriate padding bytes
AEADBadTagException - if this cipher is decrypting in an AEAD mode (such as GCM/CCM), and the received authentication tag does not match the calculated value

doFinal

public final byte[] doFinal(byte[] input,
                            int inputOffset,
                            int inputLen)
                     throws IllegalBlockSizeException,
                            BadPaddingException

Encrypts or decrypts data in a single-part operation, or finishes a multiple-part operation. The data is encrypted or decrypted, depending on how this cipher was initialized.

The first inputLen bytes in the input buffer, starting at inputOffset inclusive, and any input bytes that may have been buffered during a previous update operation, are processed, with padding (if requested) being applied. If an AEAD mode such as GCM/CCM is being used, the authentication tag is appended in the case of encryption, or verified in the case of decryption. The result is stored in a new buffer.

Upon finishing, this method resets this cipher object to the state it was in when previously initialized via a call to init. That is, the object is reset and available to encrypt or decrypt (depending on the operation mode that was specified in the call to init) more data.

Note: if any exception is thrown, this cipher object may need to be reset before it can be used again.

Parameters:
input - the input buffer
inputOffset - the offset in input where the input starts
inputLen - the input length
Returns:
the new buffer with the result
Throws:
IllegalStateException - if this cipher is in a wrong state (e.g., has not been initialized)
IllegalBlockSizeException - if this cipher is a block cipher, no padding has been requested (only in encryption mode), and the total input length of the data processed by this cipher is not a multiple of block size; or if this encryption algorithm is unable to process the input data provided.
BadPaddingException - if this cipher is in decryption mode, and (un)padding has been requested, but the decrypted data is not bounded by the appropriate padding bytes
AEADBadTagException - if this cipher is decrypting in an AEAD mode (such as GCM/CCM), and the received authentication tag does not match the calculated value

doFinal

public final int doFinal(byte[] input,
                         int inputOffset,
                         int inputLen,
                         byte[] output)
                  throws ShortBufferException,
                         IllegalBlockSizeException,
                         BadPaddingException

Encrypts or decrypts data in a single-part operation, or finishes a multiple-part operation. The data is encrypted or decrypted, depending on how this cipher was initialized.

The first inputLen bytes in the input buffer, starting at inputOffset inclusive, and any input bytes that may have been buffered during a previous update operation, are processed, with padding (if requested) being applied. If an AEAD mode such as GCM/CCM is being used, the authentication tag is appended in the case of encryption, or verified in the case of decryption. The result is stored in the output buffer.

If the output buffer is too small to hold the result, a ShortBufferException is thrown. In this case, repeat this call with a larger output buffer. Use getOutputSize to determine how big the output buffer should be.

Upon finishing, this method resets this cipher object to the state it was in when previously initialized via a call to init. That is, the object is reset and available to encrypt or decrypt (depending on the operation mode that was specified in the call to init) more data.

Note: if any exception is thrown, this cipher object may need to be reset before it can be used again.

Note: this method should be copy-safe, which means the input and output buffers can reference the same byte array and no unprocessed input data is overwritten when the result is copied into the output buffer.

Parameters:
input - the input buffer
inputOffset - the offset in input where the input starts
inputLen - the input length
output - the buffer for the result
Returns:
the number of bytes stored in output
Throws:
IllegalStateException - if this cipher is in a wrong state (e.g., has not been initialized)
IllegalBlockSizeException - if this cipher is a block cipher, no padding has been requested (only in encryption mode), and the total input length of the data processed by this cipher is not a multiple of block size; or if this encryption algorithm is unable to process the input data provided.
ShortBufferException - if the given output buffer is too small to hold the result
BadPaddingException - if this cipher is in decryption mode, and (un)padding has been requested, but the decrypted data is not bounded by the appropriate padding bytes
AEADBadTagException - if this cipher is decrypting in an AEAD mode (such as GCM/CCM), and the received authentication tag does not match the calculated value

doFinal

public final int doFinal(byte[] input,
                         int inputOffset,
                         int inputLen,
                         byte[] output,
                         int outputOffset)
                  throws ShortBufferException,
                         IllegalBlockSizeException,
                         BadPaddingException

Encrypts or decrypts data in a single-part operation, or finishes a multiple-part operation. The data is encrypted or decrypted, depending on how this cipher was initialized.

The first inputLen bytes in the input buffer, starting at inputOffset inclusive, and any input bytes that may have been buffered during a previous update operation, are processed, with padding (if requested) being applied. If an AEAD mode such as GCM/CCM is being used, the authentication tag is appended in the case of encryption, or verified in the case of decryption. The result is stored in the output buffer, starting at outputOffset inclusive.

If the output buffer is too small to hold the result, a ShortBufferException is thrown. In this case, repeat this call with a larger output buffer. Use getOutputSize to determine how big the output buffer should be.

Upon finishing, this method resets this cipher object to the state it was in when previously initialized via a call to init. That is, the object is reset and available to encrypt or decrypt (depending on the operation mode that was specified in the call to init) more data.

Note: if any exception is thrown, this cipher object may need to be reset before it can be used again.

Note: this method should be copy-safe, which means the input and output buffers can reference the same byte array and no unprocessed input data is overwritten when the result is copied into the output buffer.

Parameters:
input - the input buffer
inputOffset - the offset in input where the input starts
inputLen - the input length
output - the buffer for the result
outputOffset - the offset in output where the result is stored
Returns:
the number of bytes stored in output
Throws:
IllegalStateException - if this cipher is in a wrong state (e.g., has not been initialized)
IllegalBlockSizeException - if this cipher is a block cipher, no padding has been requested (only in encryption mode), and the total input length of the data processed by this cipher is not a multiple of block size; or if this encryption algorithm is unable to process the input data provided.
ShortBufferException - if the given output buffer is too small to hold the result
BadPaddingException - if this cipher is in decryption mode, and (un)padding has been requested, but the decrypted data is not bounded by the appropriate padding bytes
AEADBadTagException - if this cipher is decrypting in an AEAD mode (such as GCM/CCM), and the received authentication tag does not match the calculated value

doFinal

public final int doFinal(ByteBuffer input,
                         ByteBuffer output)
                  throws ShortBufferException,
                         IllegalBlockSizeException,
                         BadPaddingException

Encrypts or decrypts data in a single-part operation, or finishes a multiple-part operation. The data is encrypted or decrypted, depending on how this cipher was initialized.

All input.remaining() bytes starting at input.position() are processed. If an AEAD mode such as GCM/CCM is being used, the authentication tag is appended in the case of encryption, or verified in the case of decryption. The result is stored in the output buffer. Upon return, the input buffer's position will be equal to its limit; its limit will not have changed. The output buffer's position will have advanced by n, where n is the value returned by this method; the output buffer's limit will not have changed.

If output.remaining() bytes are insufficient to hold the result, a ShortBufferException is thrown. In this case, repeat this call with a larger output buffer. Use getOutputSize to determine how big the output buffer should be.

Upon finishing, this method resets this cipher object to the state it was in when previously initialized via a call to init. That is, the object is reset and available to encrypt or decrypt (depending on the operation mode that was specified in the call to init) more data.

Note: if any exception is thrown, this cipher object may need to be reset before it can be used again.

Note: this method should be copy-safe, which means the input and output buffers can reference the same byte array and no unprocessed input data is overwritten when the result is copied into the output buffer.

Parameters:
input - the input ByteBuffer
output - the output ByteBuffer
Returns:
the number of bytes stored in output
Throws:
IllegalStateException - if this cipher is in a wrong state (e.g., has not been initialized)
IllegalArgumentException - if input and output are the same object
ReadOnlyBufferException - if the output buffer is read-only
IllegalBlockSizeException - if this cipher is a block cipher, no padding has been requested (only in encryption mode), and the total input length of the data processed by this cipher is not a multiple of block size; or if this encryption algorithm is unable to process the input data provided.
ShortBufferException - if there is insufficient space in the output buffer
BadPaddingException - if this cipher is in decryption mode, and (un)padding has been requested, but the decrypted data is not bounded by the appropriate padding bytes
AEADBadTagException - if this cipher is decrypting in an AEAD mode (such as GCM/CCM), and the received authentication tag does not match the calculated value
Since:
1.5

wrap

public final byte[] wrap(Key key)
                  throws IllegalBlockSizeException,
                         InvalidKeyException

Wrap a key.

Parameters:
key - the key to be wrapped.
Returns:
the wrapped key.
Throws:
IllegalStateException - if this cipher is in a wrong state (e.g., has not been initialized).
IllegalBlockSizeException - if this cipher is a block cipher, no padding has been requested, and the length of the encoding of the key to be wrapped is not a multiple of the block size.
InvalidKeyException - if it is impossible or unsafe to wrap the key with this cipher (e.g., a hardware protected key is being passed to a software-only cipher).
UnsupportedOperationException - if the corresponding method in the CipherSpi is not supported.

unwrap

public final Key unwrap(byte[] wrappedKey,
                        String wrappedKeyAlgorithm,
                        int wrappedKeyType)
                 throws InvalidKeyException,
                        NoSuchAlgorithmException

Unwrap a previously wrapped key.

Parameters:
wrappedKey - the key to be unwrapped.
wrappedKeyAlgorithm - the algorithm associated with the wrapped key.
wrappedKeyType - the type of the wrapped key. This must be one of SECRET_KEY, PRIVATE_KEY, or PUBLIC_KEY.
Returns:
the unwrapped key.
Throws:
IllegalStateException - if this cipher is in a wrong state (e.g., has not been initialized).
NoSuchAlgorithmException - if no installed providers can create keys of type wrappedKeyType for the wrappedKeyAlgorithm.
InvalidKeyException - if wrappedKey does not represent a wrapped key of type wrappedKeyType for the wrappedKeyAlgorithm.
UnsupportedOperationException - if the corresponding method in the CipherSpi is not supported.

getMaxAllowedKeyLength

public static final int getMaxAllowedKeyLength(String transformation)
                                        throws NoSuchAlgorithmException

Returns the maximum key length for the specified transformation according to the installed JCE jurisdiction policy files. If JCE unlimited strength jurisdiction policy files are installed, Integer.MAX_VALUE will be returned. For more information on the default key sizes and the JCE jurisdiction policy files, please see the Cryptographic defaults and limitations in the JDK Providers Documentation.

Parameters:
transformation - the cipher transformation.
Returns:
the maximum key length in bits or Integer.MAX_VALUE.
Throws:
NullPointerException - if transformation is null.
NoSuchAlgorithmException - if transformation is not a valid transformation, i.e. in the form of "algorithm" or "algorithm/mode/padding".
Since:
1.5

getMaxAllowedParameterSpec

public static final AlgorithmParameterSpec getMaxAllowedParameterSpec(String transformation)
                                                               throws NoSuchAlgorithmException

Returns an AlgorithmParameterSpec object which contains the maximum cipher parameter value according to the jurisdiction policy file. If JCE unlimited strength jurisdiction policy files are installed or there is no maximum limit on the parameters for the specified transformation in the policy file, null will be returned.

Parameters:
transformation - the cipher transformation.
Returns:
an AlgorithmParameterSpec which holds the maximum value or null.
Throws:
NullPointerException - if transformation is null.
NoSuchAlgorithmException - if transformation is not a valid transformation, i.e. in the form of "algorithm" or "algorithm/mode/padding".
Since:
1.5

updateAAD

public final void updateAAD(byte[] src)

Continues a multi-part update of the Additional Authentication Data (AAD).

Calls to this method provide AAD to the cipher when operating in modes such as AEAD (GCM/CCM). If this cipher is operating in either GCM or CCM mode, all AAD must be supplied before beginning operations on the ciphertext (via the update and doFinal methods).

Parameters:
src - the buffer containing the Additional Authentication Data
Throws:
IllegalArgumentException - if the src byte array is null
IllegalStateException - if this cipher is in a wrong state (e.g., has not been initialized), does not accept AAD, or if operating in either GCM or CCM mode and one of the update methods has already been called for the active encryption/decryption operation
UnsupportedOperationException - if the corresponding method in the CipherSpi has not been overridden by an implementation
Since:
1.7

updateAAD

public final void updateAAD(byte[] src,
                            int offset,
                            int len)

Continues a multi-part update of the Additional Authentication Data (AAD), using a subset of the provided buffer.

Calls to this method provide AAD to the cipher when operating in modes such as AEAD (GCM/CCM). If this cipher is operating in either GCM or CCM mode, all AAD must be supplied before beginning operations on the ciphertext (via the update and doFinal methods).

Parameters:
src - the buffer containing the AAD
offset - the offset in src where the AAD input starts
len - the number of AAD bytes
Throws:
IllegalArgumentException - if the src byte array is null, or the offset or length is less than 0, or the sum of the offset and len is greater than the length of the src byte array
IllegalStateException - if this cipher is in a wrong state (e.g., has not been initialized), does not accept AAD, or if operating in either GCM or CCM mode and one of the update methods has already been called for the active encryption/decryption operation
UnsupportedOperationException - if the corresponding method in the CipherSpi has not been overridden by an implementation
Since:
1.7

updateAAD

public final void updateAAD(ByteBuffer src)

Continues a multi-part update of the Additional Authentication Data (AAD).

Calls to this method provide AAD to the cipher when operating in modes such as AEAD (GCM/CCM). If this cipher is operating in either GCM or CCM mode, all AAD must be supplied before beginning operations on the ciphertext (via the update and doFinal methods).

All src.remaining() bytes starting at src.position() are processed. Upon return, the input buffer's position will be equal to its limit; its limit will not have changed.

Parameters:
src - the buffer containing the AAD
Throws:
IllegalArgumentException - if the src ByteBuffer is null
IllegalStateException - if this cipher is in a wrong state (e.g., has not been initialized), does not accept AAD, or if operating in either GCM or CCM mode and one of the update methods has already been called for the active encryption/decryption operation
UnsupportedOperationException - if the corresponding method in the CipherSpi has not been overridden by an implementation
Since:
1.7

© 1993, 2020, Oracle and/or its affiliates. All rights reserved.
Documentation extracted from Debian's OpenJDK Development Kit package.
Licensed under the GNU General Public License, version 2, with the Classpath Exception.
Various third party code in OpenJDK is licensed under different licenses (see Debian package).
Java and OpenJDK are trademarks or registered trademarks of Oracle and/or its affiliates.
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/Cipher.html