numpy.random.RandomState.poisson
method
-
RandomState.poisson(lam=1.0, size=None) -
Draw samples from a Poisson distribution.
The Poisson distribution is the limit of the binomial distribution for large N.
Note
New code should use the
poissonmethod of adefault_rng()instance instead; seerandom-quick-start.- Parameters
-
-
lamfloat or array_like of floats -
Expectation of interval, must be >= 0. A sequence of expectation intervals must be broadcastable over the requested size.
-
sizeint or tuple of ints, optional -
Output shape. If the given shape is, e.g.,
(m, n, k), thenm * n * ksamples are drawn. If size isNone(default), a single value is returned iflamis a scalar. Otherwise,np.array(lam).sizesamples are drawn.
-
- Returns
-
-
outndarray or scalar -
Drawn samples from the parameterized Poisson distribution.
-
See also
-
Generator.poisson -
which should be used for new code.
Notes
The Poisson distribution
For events with an expected separation
the Poisson distribution
describes the probability of
events occurring within the observed interval
.
Because the output is limited to the range of the C int64 type, a ValueError is raised when
lamis within 10 sigma of the maximum representable value.References
-
1 -
Weisstein, Eric W. “Poisson Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html
-
2 -
Wikipedia, “Poisson distribution”, https://en.wikipedia.org/wiki/Poisson_distribution
Examples
Draw samples from the distribution:
>>> import numpy as np >>> s = np.random.poisson(5, 10000)
Display histogram of the sample:
>>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 14, density=True) >>> plt.show()
Draw each 100 values for lambda 100 and 500:
>>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.19/reference/random/generated/numpy.random.RandomState.poisson.html