numpy.bincount
-
numpy.bincount(x, weights=None, minlength=0)
-
Count number of occurrences of each value in array of non-negative ints.
The number of bins (of size 1) is one larger than the largest value in
x
. Ifminlength
is specified, there will be at least this number of bins in the output array (though it will be longer if necessary, depending on the contents ofx
). Each bin gives the number of occurrences of its index value inx
. Ifweights
is specified the input array is weighted by it, i.e. if a valuen
is found at positioni
,out[n] += weight[i]
instead ofout[n] += 1
.- Parameters
-
-
xarray_like, 1 dimension, nonnegative ints
-
Input array.
-
weightsarray_like, optional
-
Weights, array of the same shape as
x
. -
minlengthint, optional
-
A minimum number of bins for the output array.
New in version 1.6.0.
-
- Returns
-
-
outndarray of ints
-
The result of binning the input array. The length of
out
is equal tonp.amax(x)+1
.
-
- Raises
-
- ValueError
-
If the input is not 1-dimensional, or contains elements with negative values, or if
minlength
is negative. - TypeError
-
If the type of the input is float or complex.
Examples
>>> np.bincount(np.arange(5)) array([1, 1, 1, 1, 1]) >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7])) array([1, 3, 1, 1, 0, 0, 0, 1])
>>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23]) >>> np.bincount(x).size == np.amax(x)+1 True
The input array needs to be of integer dtype, otherwise a TypeError is raised:
>>> np.bincount(np.arange(5, dtype=float)) Traceback (most recent call last): ... TypeError: Cannot cast array data from dtype('float64') to dtype('int64') according to the rule 'safe'
A possible use of
bincount
is to perform sums over variable-size chunks of an array, using theweights
keyword.>>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights >>> x = np.array([0, 1, 1, 2, 2, 2]) >>> np.bincount(x, weights=w) array([ 0.3, 0.7, 1.1])
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.19/reference/generated/numpy.bincount.html