numpy.random.Generator.integers
method
-
Generator.integers(low, high=None, size=None, dtype=np.int64, endpoint=False)
-
Return random integers from
low
(inclusive) tohigh
(exclusive), or if endpoint=True,low
(inclusive) tohigh
(inclusive). ReplacesRandomState.randint
(with endpoint=False) andRandomState.random_integers
(with endpoint=True)Return random integers from the “discrete uniform” distribution of the specified dtype. If
high
is None (the default), then results are from 0 tolow
.- Parameters
-
-
lowint or array-like of ints
-
Lowest (signed) integers to be drawn from the distribution (unless
high=None
, in which case this parameter is 0 and this value is used forhigh
). -
highint or array-like of ints, optional
-
If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if
high=None
). If array-like, must contain integer values -
sizeint or tuple of ints, optional
-
Output shape. If the given shape is, e.g.,
(m, n, k)
, thenm * n * k
samples are drawn. Default is None, in which case a single value is returned. -
dtypedtype, optional
-
Desired dtype of the result. Byteorder must be native. The default value is np.int64.
-
endpointbool, optional
-
If true, sample from the interval [low, high] instead of the default [low, high) Defaults to False
-
- Returns
-
-
outint or ndarray of ints
-
size
-shaped array of random integers from the appropriate distribution, or a single such random int ifsize
not provided.
-
Notes
When using broadcasting with uint64 dtypes, the maximum value (2**64) cannot be represented as a standard integer type. The high array (or low if high is None) must have object dtype, e.g., array([2**64]).
References
-
1
-
Daniel Lemire., “Fast Random Integer Generation in an Interval”, ACM Transactions on Modeling and Computer Simulation 29 (1), 2019, http://arxiv.org/abs/1805.10941.
Examples
>>> rng = np.random.default_rng() >>> rng.integers(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> rng.integers(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
Generate a 2 x 4 array of ints between 0 and 4, inclusive:
>>> rng.integers(5, size=(2, 4)) array([[4, 0, 2, 1], [3, 2, 2, 0]]) # random
Generate a 1 x 3 array with 3 different upper bounds
>>> rng.integers(1, [3, 5, 10]) array([2, 2, 9]) # random
Generate a 1 by 3 array with 3 different lower bounds
>>> rng.integers([1, 5, 7], 10) array([9, 8, 7]) # random
Generate a 2 by 4 array using broadcasting with dtype of uint8
>>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], [ 1, 16, 9, 12]], dtype=uint8) # random
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.19/reference/random/generated/numpy.random.Generator.integers.html