numpy.random.exponential
-
numpy.random.exponential(scale=1.0, size=None) -
Draw samples from an exponential distribution.
Its probability density function is
for
x > 0and 0 elsewhere.is the scale parameter, which is the inverse of the rate parameter
. The rate parameter is an alternative, widely used parameterization of the exponential distribution [3].
The exponential distribution is a continuous analogue of the geometric distribution. It describes many common situations, such as the size of raindrops measured over many rainstorms [1], or the time between page requests to Wikipedia [2].
Note
New code should use the
exponentialmethod of adefault_rng()instance instead; seerandom-quick-start.- Parameters
-
-
scalefloat or array_like of floats -
The scale parameter,
. Must be non-negative.
-
sizeint or tuple of ints, optional -
Output shape. If the given shape is, e.g.,
(m, n, k), thenm * n * ksamples are drawn. If size isNone(default), a single value is returned ifscaleis a scalar. Otherwise,np.array(scale).sizesamples are drawn.
-
- Returns
-
-
outndarray or scalar -
Drawn samples from the parameterized exponential distribution.
-
See also
-
Generator.exponential -
which should be used for new code.
References
-
1 -
Peyton Z. Peebles Jr., “Probability, Random Variables and Random Signal Principles”, 4th ed, 2001, p. 57.
-
2 -
Wikipedia, “Poisson process”, https://en.wikipedia.org/wiki/Poisson_process
-
3 -
Wikipedia, “Exponential distribution”, https://en.wikipedia.org/wiki/Exponential_distribution
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.19/reference/random/generated/numpy.random.exponential.html