numpy.argsort
-
numpy.argsort(a, axis=-1, kind=None, order=None)
[source] -
Returns the indices that would sort an array.
Perform an indirect sort along the given axis using the algorithm specified by the
kind
keyword. It returns an array of indices of the same shape asa
that index data along the given axis in sorted order.- Parameters
-
-
aarray_like
-
Array to sort.
-
axisint or None, optional
-
Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used.
-
kind{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional
-
Sorting algorithm. The default is ‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers and, in general, the actual implementation will vary with data type. The ‘mergesort’ option is retained for backwards compatibility.
Changed in version 1.15.0.: The ‘stable’ option was added.
-
orderstr or list of str, optional
-
When
a
is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties.
-
- Returns
-
-
index_arrayndarray, int
-
Array of indices that sort
a
along the specifiedaxis
. Ifa
is one-dimensional,a[index_array]
yields a sorteda
. More generally,np.take_along_axis(a, index_array, axis=axis)
always yields the sorteda
, irrespective of dimensionality.
-
See also
-
sort
-
Describes sorting algorithms used.
-
lexsort
-
Indirect stable sort with multiple keys.
-
ndarray.sort
-
Inplace sort.
-
argpartition
-
Indirect partial sort.
-
take_along_axis
-
Apply
index_array
from argsort to an array as if by calling sort.
Notes
See
sort
for notes on the different sorting algorithms.As of NumPy 1.4.0
argsort
works with real/complex arrays containing nan values. The enhanced sort order is documented insort
.Examples
One dimensional array:
>>> x = np.array([3, 1, 2]) >>> np.argsort(x) array([1, 2, 0])
Two-dimensional array:
>>> x = np.array([[0, 3], [2, 2]]) >>> x array([[0, 3], [2, 2]])
>>> ind = np.argsort(x, axis=0) # sorts along first axis (down) >>> ind array([[0, 1], [1, 0]]) >>> np.take_along_axis(x, ind, axis=0) # same as np.sort(x, axis=0) array([[0, 2], [2, 3]])
>>> ind = np.argsort(x, axis=1) # sorts along last axis (across) >>> ind array([[0, 1], [0, 1]]) >>> np.take_along_axis(x, ind, axis=1) # same as np.sort(x, axis=1) array([[0, 3], [2, 2]])
Indices of the sorted elements of a N-dimensional array:
>>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape) >>> ind (array([0, 1, 1, 0]), array([0, 0, 1, 1])) >>> x[ind] # same as np.sort(x, axis=None) array([0, 2, 2, 3])
Sorting with keys:
>>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')]) >>> x array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
>>> np.argsort(x, order=('x','y')) array([1, 0])
>>> np.argsort(x, order=('y','x')) array([0, 1])
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.19/reference/generated/numpy.argsort.html