numpy.random.Generator.standard_cauchy

method

Generator.standard_cauchy(size=None)

Draw samples from a standard Cauchy distribution with mode = 0.

Also known as the Lorentz distribution.

Parameters
sizeint or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned.

Returns
samplesndarray or scalar

The drawn samples.

Notes

The probability density function for the full Cauchy distribution is

P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
(\frac{x-x_0}{\gamma})^2 \bigr] }

and the Standard Cauchy distribution just sets x_0=0 and \gamma=1

The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes spectral line broadening. It also describes the distribution of values at which a line tilted at a random angle will cut the x axis.

When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distribution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very much like a Gaussian distribution, but with heavier tails.

References

1

NIST/SEMATECH e-Handbook of Statistical Methods, “Cauchy Distribution”, https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm

2

Weisstein, Eric W. “Cauchy Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/CauchyDistribution.html

3

Wikipedia, “Cauchy distribution” https://en.wikipedia.org/wiki/Cauchy_distribution

Examples

Draw samples and plot the distribution:

>>> import matplotlib.pyplot as plt
>>> s = np.random.default_rng().standard_cauchy(1000000)
>>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
>>> plt.hist(s, bins=100)
>>> plt.show()
../../../_images/numpy-random-Generator-standard_cauchy-1.png

© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.19/reference/random/generated/numpy.random.Generator.standard_cauchy.html