numpy.vectorize
-
class numpy.vectorize(pyfunc, otypes=None, doc=None, excluded=None, cache=False, signature=None)
[source] -
Generalized function class.
Define a vectorized function which takes a nested sequence of objects or numpy arrays as inputs and returns a single numpy array or a tuple of numpy arrays. The vectorized function evaluates
pyfunc
over successive tuples of the input arrays like the python map function, except it uses the broadcasting rules of numpy.The data type of the output of
vectorized
is determined by calling the function with the first element of the input. This can be avoided by specifying theotypes
argument.- Parameters
-
-
pyfunccallable
-
A python function or method.
-
otypesstr or list of dtypes, optional
-
The output data type. It must be specified as either a string of typecode characters or a list of data type specifiers. There should be one data type specifier for each output.
-
docstr, optional
-
The docstring for the function. If None, the docstring will be the
pyfunc.__doc__
. -
excludedset, optional
-
Set of strings or integers representing the positional or keyword arguments for which the function will not be vectorized. These will be passed directly to
pyfunc
unmodified.New in version 1.7.0.
-
cachebool, optional
-
If
True
, then cache the first function call that determines the number of outputs ifotypes
is not provided.New in version 1.7.0.
-
signaturestring, optional
-
Generalized universal function signature, e.g.,
(m,n),(n)->(m)
for vectorized matrix-vector multiplication. If provided,pyfunc
will be called with (and expected to return) arrays with shapes given by the size of corresponding core dimensions. By default,pyfunc
is assumed to take scalars as input and output.New in version 1.12.0.
-
- Returns
-
-
vectorizedcallable
-
Vectorized function.
-
See also
-
frompyfunc
-
Takes an arbitrary Python function and returns a ufunc
Notes
The
vectorize
function is provided primarily for convenience, not for performance. The implementation is essentially a for loop.If
otypes
is not specified, then a call to the function with the first argument will be used to determine the number of outputs. The results of this call will be cached ifcache
isTrue
to prevent calling the function twice. However, to implement the cache, the original function must be wrapped which will slow down subsequent calls, so only do this if your function is expensive.The new keyword argument interface and
excluded
argument support further degrades performance.References
-
R5cc1f1f25381-1
-
NumPy Reference, section Generalized Universal Function API.
Examples
>>> def myfunc(a, b): ... "Return a-b if a>b, otherwise return a+b" ... if a > b: ... return a - b ... else: ... return a + b
>>> vfunc = np.vectorize(myfunc) >>> vfunc([1, 2, 3, 4], 2) array([3, 4, 1, 2])
The docstring is taken from the input function to
vectorize
unless it is specified:>>> vfunc.__doc__ 'Return a-b if a>b, otherwise return a+b' >>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`') >>> vfunc.__doc__ 'Vectorized `myfunc`'
The output type is determined by evaluating the first element of the input, unless it is specified:
>>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <class 'numpy.int64'> >>> vfunc = np.vectorize(myfunc, otypes=[float]) >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <class 'numpy.float64'>
The
excluded
argument can be used to prevent vectorizing over certain arguments. This can be useful for array-like arguments of a fixed length such as the coefficients for a polynomial as inpolyval
:>>> def mypolyval(p, x): ... _p = list(p) ... res = _p.pop(0) ... while _p: ... res = res*x + _p.pop(0) ... return res >>> vpolyval = np.vectorize(mypolyval, excluded=['p']) >>> vpolyval(p=[1, 2, 3], x=[0, 1]) array([3, 6])
Positional arguments may also be excluded by specifying their position:
>>> vpolyval.excluded.add(0) >>> vpolyval([1, 2, 3], x=[0, 1]) array([3, 6])
The
signature
argument allows for vectorizing functions that act on non-scalar arrays of fixed length. For example, you can use it for a vectorized calculation of Pearson correlation coefficient and its p-value:>>> import scipy.stats >>> pearsonr = np.vectorize(scipy.stats.pearsonr, ... signature='(n),(n)->(),()') >>> pearsonr([[0, 1, 2, 3]], [[1, 2, 3, 4], [4, 3, 2, 1]]) (array([ 1., -1.]), array([ 0., 0.]))
Or for a vectorized convolution:
>>> convolve = np.vectorize(np.convolve, signature='(n),(m)->(k)') >>> convolve(np.eye(4), [1, 2, 1]) array([[1., 2., 1., 0., 0., 0.], [0., 1., 2., 1., 0., 0.], [0., 0., 1., 2., 1., 0.], [0., 0., 0., 1., 2., 1.]])
Methods
__call__
(self, \*args, \*\*kwargs)Return arrays with the results of
pyfunc
broadcast (vectorized) overargs
andkwargs
not inexcluded
.
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.19/reference/generated/numpy.vectorize.html